K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Vì ki phân số đó tói giản thì tử ko thể chi hết cho mẫu.

Còn một số tự nhiên thì chia hết cho mẫu.

Khi số ko chia hết cho một cộng với một số chia hết cho số đó =>Phân số đó tối giản

Khi số ko chia hết cho một trừ với một số chia hết cho số đó=> Phân số đó tối giản

NV
30 tháng 3 2023

Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)

\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)

\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau

Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên

30 tháng 3 2023

Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)

⇒ 6n+7 ⋮ d

     3n+2 ⋮ d

⇒6n+7 - 2(3n+2)⋮ d

⇒3⋮d

d∈(1;3)

Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha

 

 

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được