Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bai2
UCLN (n,n+2)=d
=>(n+2)-n chia hết cho d
2 chia het cho d
vay d thuoc uoc cua 2={1,2}
nếu n chia hết cho 2 uoc chung lon nhta (n,n+2) la 2
neu n ko chia het cho 2=> (n,n+2) nguyen to cung nhau
BCNN =n.(n+2) neu n le
BCNN=n.(n+2)/2
Ta có:
1+2+3+...+2005=(2005+1).2005:2≡2006.2005:2
≡1003.2005≡3.1≡3
(mod 4)
Vậy tổng của các số từ 1 đến 2005 có dạng 4k+3 (k thuộc N) nên không là số chính phương (đpcm).
Bài 1
Gọi 3 số tự nhiên liên tiếp là n; n+1; n+2. Tổng của chúng là
n+n+1+n+2=3n+3=3(n+1) chia hết cho 3
Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3. Tổng của chúng là
n+n+1+n+2+n+3=4n+6=4n+4+2=4(n+1)+2 chia cho 4 dư 2
Bài 2
(Xét tính chẵn hoặc lẻ của n)
+ Nếu n lẻ thì n+3 chẵn; n+6 lẻ => (n+3)(n+6) chẵn => chia hết cho 2
+ Nếu n chẵn thì n+3 lẻ, n+6 chẵn => (n+3)(n+6) chẵn => chia hết cho 2
=> (n+3)(n+6) chia hết cho 2 với mọi n
a)Gọi 3 số tự nhiên liên tiếp là:a;a+1;a+2
Tổng 3 số tự nhiên liên tiếp là:S=a+a+1+a+2=3a+3
Vì 3 chia hết cho 3 nên 3a chia hết cho 3=>3a chia hết cho 3
hay S chia hết cho 3
Vậy _________________________
Bạn tự kết luận nhé!
Câu b tương tự chỉ là nó không chia hết cho 4 thôi!
a)Ta gọi 3 số tự nhiên liên tiếp là:a,a+1,a+2(a thuộc N)
Ta có:a+(a+1)+(a+2)=3a+3 chia hết cho 3 vì 3a chia hết cho 3,3 chia hết cho a
Suy ra tổng 3 số tự nhiên liên tiếp chia hết cho 3.
b)Tương tự như câu a
a) Gọi 3 STN liên tiếp là a; a+1 ; a+2.
Ta có: a + a+1 + a+2 = a+a+a + (1+2) = 3a + 3.
Vì 3a và 3 chia hết cho 3 => 3a+3 chia hết cho 3 hay tổng 3 STN liên tiếp chia hết cho 3
a) Gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )
Ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3
Vậy tổng của 3 số liên tiếp chia hết cho 3
b) Gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )
Ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
chứng minh
số chính phương chia 4 dư 0 hoac 1
A=n^2 (n so tu nhien)
n=2k => A=4k^2 chia het cho 4
n=2k+1=> A=(2k+1)^2=4k^2+4k+1 chia 4 du 1
Kết luận số chính phương chia cho 4 chỉ có thể dư 0 hoặc dư 1
4 số liên tiếp có dạng a, a+1 , a+2, a+3
A=a+a+1+a+2+a+3=4a+6
T/C : "Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1"
\(\frac{A}{4}=\left(\frac{4a+6}{4}\right)=\left(a+1\right)du2\)