K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2018

Gọi 4 số đó là a , (a+1) , (a + 2) , (a + 3) 

Do là 4 số tự nhiên liên tiếp nên buộc chúng phải là số chẵn

Đặt \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=t^2\)

Ta có 

\(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2=4a^2+12a+14=4\left(a^2+3a+3\right)+2\)

Nhận thấy \(a^2+\left(a+1\right)^2+\left(a+2\right)^2+\left(a+3\right)^2\equiv2\left(mod4\right)\)

Mặt khác , \(t^2\equiv0\left(mod4\right)\)

=> Vô lý 

Vậy tổng bình phương 4 số tự nhiên liên tiếp không là số chính phương 

15 tháng 8 2015

20 số nguyên liên tiếp có 6 số chia hết cho 3

→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1

→ tổng 20 số chính phương liên tiếp chia 3 dư 2

15 tháng 8 2015

Cách làm thủ công nhất là gọi 20 số đó lần lượt là n^2;(n+1)^2...(n+19)^2 rồi tách ra phân tích thnàh 1 cái bình phương + 1 số <>0

15 tháng 8 2015

20 số nguyên liên tiếp có 6 số chia hết cho 3

→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1

→ tổng 20 số chính phương liên tiếp chia 3 dư 2

24 tháng 9 2018

vào câu hỏi tương tự nha bn

có đó

k mk nhé

~beodatmaytroi~

26 tháng 3 2021

a)Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương 

b) Chứng minh rằng tổng các bình phương của không  số nguyên liên tiếp (k=3,4,5) không là số chính phương