Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sứ tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ
=>a+b=c, trong đó a,c là số hữu tỉ,b là số vô tỉ=>b=c-a mà a,c là số hữu tỉ=>c-a là số hữu tỉ=>b là số hữu tỉ(trái với đề bài)
=>Giả sứ sai=> đpcm
a vừa dùng ac Trần Anh Thơ Nha đây mới là ac thật nè kết bạn nhe cobe
giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )
\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )
vậy ...
b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )
vậy ....
giải hộ tớ bài ở trên
Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒ b=c-a mà a và c là các số hữu tỉ ⇒ a-c là số hữu tỉ ⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒ đpcm