Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong 4 số tự nhiên liên tiếp có 2 số chẵn và 2 số lẻ
Mà số chính phương chia 4 dư 0 (với số chẵn) hoặc 1 (với số lẻ)
suy ra tổng các bình phương của 4 số tự nhiên liên tiếp chia 4 dư 2(vô lí)
((a^2+(a+1)^2+(a+2)^2+(a+3)^2) suy ra điều phải chứng minh
Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương
Gọi 5 số tự nhiên liên tiếp là n- 2; n - 1; n ; n + 1; n + 2
Ta có : (n-2)2 + (n-1)2 + n2 + (n+1)2 + (n +2)2 = (n2 - 4n + 4) + (n2 - 2n + 1) + n2 + (n2 + 2n + 1)+( n2 + 4n + 4) = 5n2 + 10 = 5.(n2 + 2)
Ta có 5. (n2 + 2) chia hết cho 5 nhưng không chia hết cho 25
vì n2 + 2 không chia hết cho 5 (do n2 có thể tận cùng là 0;1;4;5;6;9 )
=> 5.(n2 + 2) không là số chính phương => đpcm
Gọi 5 số tự nhiên liên tiếp là (a-2 ) (a-1) a (a+1) (a+2)
Ta có :
Ta có số chính phương luôn luôn có dạng 4k +1 hoặc 4k
Xét 2 TH ta luôn có:
TH1:
Ta có A= 20k + 10 = 4m + 2 (m thuộc N) ko là số chính phương
TH2:
Ta có: A= 20k + 15 = 4m + 3(m thuộc N) ko là số chính phương
ta có : a^3+(a+1)^3+(a+2)^3=a^3+a^3x1^3+a^3x2^3=a^3+a^3+a^3x8=a^3x(1+1+8)=a^3x10
Gọi ba tự nhiên lẻ bất kì lần lượt là \(2m+1,2n+1,2p+1\).
Ta có: \(\left(2m+1\right)^2+\left(2n+1\right)^2+\left(2p+1\right)^2\)
\(=4m^2+4m+1+4n^2+4n+1+4p^2+4p+1\)
\(\equiv3\left(mod4\right)\)
mà số chính phương khi chia cho \(4\)chỉ có thể dư \(0\)hoặc \(1\).
Do đó ta có đpcm.
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
đây là câu hỏi trong chuyên đề SCP ở HỌC BÀI mà
Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương
K nhak ^_^ ^_^ ^_^