K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2020

Xét 32 số có dạng 32,3232,...,3232...3232

Theo nguyên lí Diriclet tồn tại 2 số có cùng số dư khi chia cho số 31

Giả sử 2 số đó là 32...32,32...32( lần lượt có m và n cặp 32, n>m)

Khi đó hiệu 2 số đó chia hết cho 31, tức (32...32).10m( n-m cặp 32 )

Mặt khác (10m,31)=1

Từ đó suy ra số 32...32 (n-m cặp 32) chia hết cho 31

323232..........32=101010..10.32

=> tồn tại.....................

18 tháng 2 2016

sao 1010...10 chia hết cho 32 vậy bạn

AH
Akai Haruma
Giáo viên
8 tháng 3 2023

Lời giải:
Cho $n=1$ thì $2023^n-1=2023^1-1=2022\vdots 2022$

Thực chất là với  mọi số $n\in\mathbb{N}$ thì $2023^n-1\vdots 2022$

6 tháng 11 2016

Ta có 2013.5=10065

Vậy số 555...5 chia hết cho 3 khi số đó có 5 số tận cùng là 10065

6 tháng 1 2017

Xét các số :2016;20162016;..........;2016;...;2016(2018 số 2016)

Có 2018 số nên chia cho 2017 có ít nhất 2 số đồng dư

Giả sử số đó là 2016..........2016 (m số 2016) và 2016.......2016(n số 2016) (m;n E N m>n)

Suy ra 2016.........2016-2016.......2016 chia hết cho 2017

m số 2016        n số 2016

Suy ra 2016...........2016x1000

m-n số 2016

Mà (1000 n ;2017)=1

Suy ra 2016.......2016 chia hết cho 2017(m-n số 2016)                 (đpcm) 

2 tháng 3 2018

cố lên

6 tháng 3 2016

đừng có khoe NHOA ai mà thèm .

kệ chú !!!!!