K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2018

Ta đặt AB = c, BC = a,CA = b.

Theo tính chất đường phân giác ta có:

\(\frac{CD}{AD}=\frac{BC}{BA}\Rightarrow\frac{CD}{AD+CD}=\frac{CD}{AC}=\frac{BC}{BA+BC}\Rightarrow CD=\frac{AB.BC}{AB+BC}=\frac{ab}{c+a}\)

\(\Leftrightarrow\frac{CI}{CE}=\frac{a+c}{a+b+c}\)

Áp dụng định lý Py-ta-go đảo, ta có:

\(BD.CE=2BI.IC\Rightarrow\frac{BI}{BD}.\frac{IC}{CE}=\frac{1}{2}\Rightarrow\frac{\left(a+b\right)\left(b+c\right)^2}{a+b+c}=\frac{1}{2}\Leftrightarrow a^2+b^2+c^2\Rightarrow\Delta ABC\perp A\)

24 tháng 6 2015

Bài 2: Goi G là giao điểm của 2 đường trung tuyến CE và BD ta có GD = 1/2 BG và EG = 1/2 CG [Vì theo tính chất của trung tuyến tại giao điểm G, của 3 đường ta có G chia đường trung tuyến ra làm 2 phần, phần này gấp đôi phần kia.] 
Áp dụng định lý pythagore vào tam giác vuông BGE ta có: 
BG^2 = EB^2 - EG^2 = 9 - EG^2 = 9 - (1/2. GC)^2 (1) 
Áp dụng định lý pythagore vào tam giác vuông CGD ta có: 
GC^2 = CD^2 - GD^2 = 16 - GD^2 = 16 - (1/2BG)^2 (2) 

mặt khác BC^2 = BG^2 + GC^2. Do đó từ (1) và (2) ta có: 

BC^2 = 9 -1/4 GC^2 + 16 - 1/4 BG^2 = 25 - 1/4(GC^2 + BG^2)  
<=> BC^2 + 1/4(GC^2 + BG^2) = 25 <=> BC^2 + 1/4BC^2 = 25 <=> 5/4BC^2 = 25 <=> 
BC^2 =25. 4/5 = BC^2 =20 <=> BC = căn 20 <=> 
BC = 2.(căn 5) cm

 

 

27 tháng 8 2015

Vì \(\Delta\)GDC vuông tại G nên theo định lý Py-ta-go ta có

\(DC^2=GD^2+GC^2\)(3)

Từ (1),(2) và (3) ta có 

\(BC^2=EB^2-EG^2+DC^2-GD^2=\left(\frac{AB}{2}\right)^2-EG^2+\left(\frac{AC}{2}\right)^2-GD^2\)

\(\Rightarrow BC^2=\left(\frac{6}{2}\right)^2-EG^2+\left(\frac{8}{2}\right)^2-GD^2=3^2+4^2-\left(EG^2+GD^2\right)=25-\left(EG^2+GD^2\right)\)(4)

Mà ta có ED là đường trung bình của \(\Delta ABC\) nên ta có \(ED=\frac{BC}{2}\)   (5)

Vì \(\Delta EDG\) vuông tại G nên áp dụng định lý Py-ta-go ta có 

\(ED^2=GD^2+EG^2\)  (6)

Từ (4),(5) và (6) ta có 

\(BC^2=25-ED^2=25-\left(\frac{BC}{2}\right)^2=25-\frac{BC^2}{4}=\frac{100-BC^2}{\text{4}}\)

\(\Rightarrow\text{4BC^2}=100-BC^2\)

\(\Leftrightarrow5BC^2=100\)

\(\Leftrightarrow BC^2=20\)

\(\Leftrightarrow BC=\sqrt{20}\)(cm)

Vậy \(BC=\sqrt{20}cm\)

13 tháng 11 2021

qwdddddddddddddddđqqqddddddddddddddddddddddddddddddddddddd09U*(9w bi  uehvuhytgvguvh eogeohseydđ qddddddasdewd 7fh 89

13 tháng 11 2021
Không làm mà đòi có ăn à

1: Xét ΔBIC có 

\(\widehat{BIC}+\widehat{IBC}+\widehat{ICB}=180^0\)

\(\Leftrightarrow\widehat{BIC}+45^0=180^0\)

hay \(\widehat{BIC}=135^0\)

\(\Leftrightarrow\widehat{CID}=180^0-135^0=45^0\)

 

22 tháng 6 2021

a) Ta có: \(\angle BEC=\angle BDC=90\Rightarrow BCDE\) nội tiếp \(\Rightarrow\angle ADE=\angle ABC\)

Xét \(\Delta ADE\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\angle BACchung\\\angle ADE=\angle ABC\end{matrix}\right.\)

\(\Rightarrow\Delta ADE\sim\Delta ABC\left(g-g\right)\Rightarrow\dfrac{AD}{AB}=\dfrac{AE}{AC}\Rightarrow AD.AC=AE.AB\)

b) Vì \(\Delta AMC\) vuông tại M có \(MD\bot AC\Rightarrow AM^2=AD.AC\)

Vì \(\Delta ANB\) vuông tại N có \(NE\bot AB\Rightarrow AN^2=AE.AB\)

mà \(AE.AB=AD.AC\Rightarrow AM^2=AN^2\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\) cân tại A

c) Từ D kẻ đường thẳng vuông góc với DE cắt CE tại F

Xét \(\Delta DEF\) và \(\Delta DBC:\) Ta có: \(\left\{{}\begin{matrix}\angle EDF=\angle BDC=90\\\angle DEF=\angle DBC\left(BEDCnt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta DEF\sim\Delta DBC\left(g-g\right)\Rightarrow\dfrac{DE}{EF}=\dfrac{DB}{BC}\Rightarrow DE.BC=DB.EF\)

Ta có: \(\angle EDF-\angle BDF=\angle CDB-\angle BDF\left(=90-\angle BDF\right)\)

\(\Rightarrow\angle EDB=\angle CDF\)

Xét \(\Delta DEB\) và \(\Delta DFC:\) Ta có: \(\left\{{}\begin{matrix}\angle EDB=\angle FDC\\\angle DCF=\angle DBE\left(BEDCnt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta DEB\sim\Delta DFC\left(g-g\right)\Rightarrow\dfrac{CF}{BE}=\dfrac{CD}{BD}\Rightarrow BE.CD=BD.CF\)

\(\Rightarrow BE.CD+DE.BC=BD.CF+BD.EF=BD\left(CF+EF\right)\)

\(=BD.CE\)

undefined

22 tháng 6 2021

a,  tam giác ABD đồng dạng với tam giác ACE (g-g)

=>\(\dfrac{AB}{AC}\) =\(\dfrac{AD}{AE}\) 

nhân chéo được : AB.AE=AD.AC