K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giả sử n = 8k + 7 là tổng của 3 bình phương

Vì 8k + 7 là số lẻ nên 8k + 7 chỉ có thể tách thành tổng các bình phương của 3 số lẻ hoặc 2 số chẵn 1 số lẻ

Mà số chính phương chia 8 chỉ có thể dư 0; 1 hoặc 4

Do đó, nếu 8k + 7 có thể tách thành tổng 3 số lẻ thì 8k + 7 chia 8 dư 1 + 1 + 1 = 3, vô lý vì 8k + 7 chia 8 dư 7

nếu 8k + 7 có thể tách thành tổng 2 số chẵn 1 số lẻ thì 8k + 7 chia 8 dư 0 + 0 + 1 = 1 hoặc 0 + 4 + 1 = 5 hoặc 4 + 4 + 1 = 9, vô lý vì 8k + 7 chia 8 dư 7=>đpcm

18 tháng 11 2017

Giả sử n = 8k + 7 là tổng của 3 bình phương

Vì 8k + 7 là số lẻ nên 8k + 7 chỉ có thể tách thành tổng các bình phương của 3 số lẻ hoặc 2 số chẵn 1 số lẻ

Mà số chính phương chia 8 chỉ có thể dư 0; 1 hoặc 4

Do đó, nếu 8k + 7 có thể tách thành tổng 3 số lẻ thì 8k + 7 chia 8 dư 1 + 1 + 1 = 3, vô lý vì 8k + 7 chia 8 dư 7

nếu 8k + 7 có thể tách thành tổng 2 số chẵn 1 số lẻ thì 8k + 7 chia 8 dư 0 + 0 + 1 = 1 hoặc 0 + 4 + 1 = 5 hoặc 4 + 4 + 1 = 9, vô lý vì 8k + 7 chia 8 dư 7

Như vậy, điều giả sử là sai

=> đpcm

12 tháng 9 2018

Giả sử 2002 viết được thành hiệu bình phương của 2 số tự nhiên. 

Ta có: \(2002=a^2-b^2=\left(a-b\right)\left(a+b\right)\) (1)

Mà \(a+b+a-b=2a⋮2\)

Nên a và b là 2 số cùng tính chẵn lẻ

\(\Rightarrow\hept{\begin{cases}\left(a+b\right)⋮2\\\left(a-b\right)⋮2\end{cases}\Rightarrow\left(a+b\right)\left(a-b\right)⋮4}\)(2)

Từ (1) và (2) \(\Rightarrow2002⋮4\) (vô lý)

Vậy điều giả sử là sai. 2002 không thể biểu diễn thành hiệu các bình phương của 2 số tự nhiên.

Chúc bạn học tốt.

12 tháng 10 2017

Gọi 3 số nguyên liên tiếp là: a-1, a, a+1 
Giả sử b3= (a - 1)2+a2+(a + 1)2 
= 3a2+2 => chia 3 dư 2 
=> b chia 3 dư 2 => b=3k+2 
=> (3k + 2)3 = 3a+ 2 
=>27k^3+54k^2+36k+8=3a^2+2 
=>a2 = 9k(k+1)2+(3k+2) 
NX: ta có vế trái là một số chia 3 dư 2 
Mà vế phải là một số chính phương, nên chia 3 chỉ có 2 khả năng dư 1 hoăc dư 0=> vô lý 
vậy ta có điều cần phải C/m.

7 tháng 5 2021

Ta sẽ CM tổng của 2 số chính phương chia 4 không thể có số dư là 3.

Thật vậy mọi số chính phương chẵn luôn chia hết cho 4.

mọi số chính phương lẻ luôn chia 4 dư 1 (vì (2x+1)2=4x(x+1)+1 chia 4 dư 1)

Do đó tổng của hai số chính phương chỉ có thể có số dư 0,1 hoặc 2 khi chia cho 4

Mà các số trên đều được viết dưới dạng 11...1=10...0+11.

Mà 10...0 chia hết cho 4 và 11 chia 4 dư 3 nên dãy số này không có số nào biểu diễn được dưới dạng tổng của 2 số chính phương (đpcm)