Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
Vì 99.ab chia hết cho 99
=>ab+cd chia hết cho 99
=>ĐPCM
Ngược lại:
Ta có: ab+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>abcd chia hết cho 99
=>ĐPCM
Bấm vào đây bạn nhé Câu hỏi của Nguyễn Khánh Tâm - Toán lớp 6 - Học toán với OnlineMath
Ta có: abcd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
Vì 99 . ab chia hết cho 99 \(\Rightarrow\)ab + cd chia hết cho 99 ( ĐPCM )
Ngược lại:
Ta có: ab + cd chia hết cho 99
\(\Rightarrow\)99 . ab + ab + cd chia hết cho 99
\(\Rightarrow\)ab . 100 + cd chia hết cho 99
\(\Rightarrow\)abcd chia hết cho 99 ( ĐPCM )
Bài này tương tự bài lúc nãy
Chỉ thay đổi cách diễn đạt thôi
Ủng hộ nha
abcd chia het cho 99
=>ab.100+cd chia het cho 99
=>ab.99+(ab+cd) chia het cho 99
Vi ab.99 chia het cho 99
Nen ab+cd chia het cho 99 (ĐPCM)
Ta có:abcd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
Vì 99.ab chia hết cho 99
=>ab+cd chia hết cho 99
=>điều phải chứng minh(ĐPCM)
Ngược lại,ta có:
ab+cd chia hết cho 99
=>99.ab+ab+cd chia hết cho 99
=>ab.100+cd chia hết cho 99
=>abcd chia hết cho 00
=>điều phải chứng minh(ĐPCM)
Nhớ tick cho mk nha!
\(\overline{abcd}=100\overline{ab}+\overline{cd}=99\overline{ab}+\overline{ab}+\overline{cd}\)
Vì \(\overline{abcd}\) và \(99\overline{ab}\) đều \(⋮\) 99 nên \(\overline{ab}\) + \(\overline{cd}\) cũng phải \(⋮\) 99
\(\Rightarrow\) ĐPCM