K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

Bạn có thể kiểm tra lại đề o , sai đề rồi

mình tìm thấy 1 số giá trị như x=0,x=13 là snt nha bạn

20 tháng 8 2016

Với a bất kì thì ta chọn b sao cho b=a-4

Khi đó: ab+4=a(a-4)+4

                  =a2-4a+4

                  =a2-2.2.a+22

                  =(a-2)2

Vậy với a E N ta luôn tìm được b sao cho ab+4 là số chính phương

20 tháng 8 2016

gieo mưa có ngày gặp bão . hehe

17 tháng 8 2016

Giả sử ab + 4 là số chính phương

Ta có: ab + 4 = x2

=> ab = x2 - 4

=> ab = (x - 2).(x + 2)

Giử sử a > b => a = x + 2; b = x - 2

=> a - b = (x + 2) - (x - 2)

=> a - b = x + 2 - x + 2

=> a - b = 4

=> với a - b = 4 thì ab + 4 là số chính phương

=> điều giả sử là đúng

ta có: giả sử ab + 4 = A2

<=> A2 - 4 = ab

<=> A2 - 22 = ab

<=> (A - 2) (A + 2) = ab : luôn đúng với mọi a,b

=> ĐCCM

t i c k nha!! 5675675677687697843543543534456567567876876876897

24 tháng 7 2018

Ta có: 16n-1=(17-1)n-1=BS17+1-1 (vì n chẵn)=BS17\(⋮\)17  => Đpcm

24 tháng 7 2018

Ta có: 16n-1=(17-1)n-1=BS17+1-1 (vì n chẵn)=BS17\(⋮\)17  => Đpcm

29 tháng 7 2021

Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).

Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))

Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.

Vậy...

 

 

DD
29 tháng 7 2021

Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).

Khoảng này có \(n\)số tự nhiên. 

Với \(k\)bất kì \(k=\overline{2,n+1}\)thì 

\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố. 

Do đó ta có đpcm.

1 tháng 5 2019

Ta có :

n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 2 )

Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số

1 tháng 5 2019

 Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn

(+)  Nếu n = 2k =)  n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2     (1)

(+)  Nếu n = 2k + 1 =)  n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2     (2)

    Từ (1) và (2) ta có điều phải chứng minh