Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a bất kì thì ta chọn b sao cho b=a-4
Khi đó: ab+4=a(a-4)+4
=a2-4a+4
=a2-2.2.a+22
=(a-2)2
Vậy với a E N ta luôn tìm được b sao cho ab+4 là số chính phương
Giả sử ab + 4 là số chính phương
Ta có: ab + 4 = x2
=> ab = x2 - 4
=> ab = (x - 2).(x + 2)
Giử sử a > b => a = x + 2; b = x - 2
=> a - b = (x + 2) - (x - 2)
=> a - b = x + 2 - x + 2
=> a - b = 4
=> với a - b = 4 thì ab + 4 là số chính phương
=> điều giả sử là đúng
ta có: giả sử ab + 4 = A2
<=> A2 - 4 = ab
<=> A2 - 22 = ab
<=> (A - 2) (A + 2) = ab : luôn đúng với mọi a,b
=> ĐCCM
t i c k nha!! 5675675677687697843543543534456567567876876876897
Ta có: 16n-1=(17-1)n-1=BS17+1-1 (vì n chẵn)=BS17\(⋮\)17 => Đpcm
Ta có: 16n-1=(17-1)n-1=BS17+1-1 (vì n chẵn)=BS17\(⋮\)17 => Đpcm
Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).
Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))
Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.
Vậy...
Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).
Khoảng này có \(n\)số tự nhiên.
Với \(k\)bất kì \(k=\overline{2,n+1}\)thì
\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố.
Do đó ta có đpcm.
Ta có :
n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )
= ( n + 1 ) ( n2 - n + 2 )
Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số
Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn
(+) Nếu n = 2k =) n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2 (1)
(+) Nếu n = 2k + 1 =) n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2 (2)
Từ (1) và (2) ta có điều phải chứng minh
Bạn có thể kiểm tra lại đề o , sai đề rồi
mình tìm thấy 1 số giá trị như x=0,x=13 là snt nha bạn