K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

\(2S=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{19}}\)

\(2S-S=1-\frac{1}{2^{20}}\)

\(S=1-\frac{1}{2^{20}}< 1\)-> ĐPCM.

23 tháng 1 2019

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}.\)

\(\Rightarrow2A=1+\frac{1}{2}+...+\frac{1}{2^8}\)

\(\Rightarrow2A-A=1-\frac{1}{2^9}\)

\(A=1-\frac{1}{2^9}\)

=> đpcm

23 tháng 1 2019

dpcm là j vậy bn

3 tháng 1 2023

\(S=3^1+3^2+3^3+.....+3^{100}\) \(=\left(3^1+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

\(=120+3^5.\left(3^1+3^2+3^3+3^4\right)+....+3^{97}.\left(3^1+3^2+3^3+3^4\right)\)

\(=1.120+3^5.120+...+3^{97}.120\)

\(=\left(1+3^5+...+3^{97}\right).120\)

\(\Rightarrow S⋮120\)

Vậy ........

3 tháng 5 2017

Lời giải:

\(S=1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)

Dễ thấy:

\(\dfrac{1}{2^2}=\dfrac{1}{2.2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)

\(....\)

\(\dfrac{1}{10^2}=\dfrac{1}{10.10}< \dfrac{1}{9.10}\)

\(\Rightarrow S< 1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)

\(\Rightarrow S< 1+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(\Rightarrow S< 1+1-\dfrac{1}{10}\)

\(\Rightarrow S< 2-\dfrac{1}{10}\)

\(\Rightarrow S< 2\)

4 tháng 5 2017

thanks

24 tháng 12 2015

S=1+3+3^2+3^3+3^4+...+3^2009

=(1+3)+(3^2+3^3)+...+(3^2008+3^2009)

=4+3^2(1+3)+...+3^2008(1+3)

=4(1+3^2+...+3^2008) chia hết cho 4

14 tháng 3 2023

S = 1/2 + 1/2² + 1/2³ + ... + 1/2²⁰

⇒2S = 1 + 1/2 + 1/2² + ... + 1/2¹⁹

⇒S = 2S - S

= (1 + 1/2 + 1/2² + ... + 1/2¹⁹) - (1/2 + 1/2² + 1/2³ + ... + 1/2²⁰)

= 1 - 1/2²⁰ < 1

Vậy S < 1