Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta co:(11mu n+2)+(12 mu 2n+1)=121.(11mu n)+12.(144 mu n)
=(133-12).(11mu n)+12.(144 mu n)
=133.(11 mu n)+(144mu n -11 mu n).12
ta lai co:133.11 mu n chia het cho 133;(144 mu n)-(11 mu n) chia het cho (144-11)
=>(144 mu n)-(11 mu n)chia het cho 133
=>(11 mu n+2)+(12 mu 2n+1) chia het cho 133
Bài 7: Với n =1 \(2.7^n+1=15⋮3\Rightarrow\) mệnh đề đúng với n = 1 (1)
Giả sử đúng với n = k.Tức là \(2.7^k+1⋮3\).Ta c/m nó đúng với n = k + 1. (2)
Tức là c/m \(2.7^{k+1}+1⋮3\).Thật vậy:
\(2.7^{k+1}+1=7\left(2.7^k+1\right)-6\)
Do \(2.7^k+1⋮3\Rightarrow7\left(2.7^k+1\right)⋮3\) và \(6⋮3\)
Suy ra \(2.7^{k+1}+1=7\left(2.7^k+1\right)-6⋮3\) (3)
Từ (1),(2) và (3) ta có đpcm.
Ta có: A = 1 + 3 + 32 + 33 +....+ 310
=> 3A = 3 + 32 + 33 + 34 + ..... + 311
=> 3A - A = 311 - 1
=> 2A = 311 - 1
=> 2A + 1 = 311
=> n = 11
trong 2 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
=>n(n+1)(2n+1) chia hết cho 2
xét n=3k=>n(n+1)(2n+1) chia hết cho 3 (I)
xét n=3k+1=>2n+1=3.2k+2+1=3.2k+3=3(2k+1) chia hết cho 3
=>n(n+1)(2n+1) chia hết cho 3 (II)
xét n=3k+2=>n+1=3k+3=3(k+3) chia hết cho 3
=>n(n+1)(2n+1) chia hết cho 3 (III)
từ (I);(II);(III)=>n(n+1)(2n+1) chia hết cho 3
vì (2;3)=1=>n(n+1)(2n+1) chia hết cho 6
=>đpcm
trong 2 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
=>n(n+1)(2n+1) chia hết cho 2
xét n=3k=>n(n+1)(2n+1) chia hết cho 3 (I)
xét n=3k+1=>2n+1=3.2k+2+1=3.2k+3=3(2k+1) chia hết cho 3
=>n(n+1)(2n+1) chia hết cho 3 (II)
xét n=3k+2=>n+1=3k+3=3(k+3) chia hết cho 3
=>n(n+1)(2n+1) chia hết cho 3 (III)
từ (I);(II);(III)=>n(n+1)(2n+1) chia hết cho 3
vì (2;3)=1=>n(n+1)(2n+1) chia hết cho 6
=>đpcm