Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì :
a^2; b^2 là số chính phương
a,b không chia hết cho 3
Nên a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (1)
Ta có :
(a^2 - 1) - (b^2 - 1) = (a - 1)(a + 1) - (b - 1)(b + 1) chia hết cho 8 (2)
Vì :
(a - 1); (a + 1)(a - 1); (a + 1) là 2 số chẵn liên tiếp
(b - 1); (b + 1)(b - 1), (b + 1) là 2 số chẵn liên tiếp
Từ (1), (2)
=> a^2 - b^2 chia hết cho 3.8
=> a^2 - b^2 chia hết cho 24
a3+b3=(a+b)(a2-ab+b2)
Mà a+b chia hết cho 3
Nên a3+b3 chia hết cho 3
gọi 2 số đó là x;y(x;y∈∈Z)
ta có x3+y3=(x+y)(x2−xy+y2)x3+y3=(x+y)(x2−xy+y2)
do x+y⋮⋮3 => DPCM
Chúc làm bài tốt
Trả lời
dễ mà gọi 2 số đó là x;y(x;yZ)
ta có \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Vì \(x+y⋮3\)
\(\Rightarrow\left(x+y\right)\left(x^2-xy+y^2\right)⋮3\)
\(\Rightarrow x^3+y^3⋮3\)( đpcm )
Gọi 2 số đó là x;y (x;y∈Z)
Ta có: x^3+y^3=(x+y)(x^2−xy+y^2)
Do x+y 3 => ..........
3 số nguyên liên tiếp có dạng (a-1);a;(a+1).
Tổng lập phương của chúng là:
(a-1)^3 + a^3 + (a+1)^3 = 3a^3 +6a
vì 3a^3 , 6a chia hết cho 3 nên..
Theo đề bài, ta có: \(p^2+a^2=b^2\Rightarrow p^2=b^2-a^2=\left(b+a\right)\left(b-a\right)\)(1)
Vì p là số nguyên tố nên \(p^2\)có 3 ước là \(1;p;p^2\)(2)
Từ (1) và (2) suy ra có 3 khả năng có thể xảy ra là:
Khả năng 1: \(\hept{\begin{cases}b+a=1\\b-a=p^2\end{cases}}\). Điều này không thể xảy ra vì p > 3 nên \(p^2>9\Rightarrow b-a>9>1=b+a\Rightarrow-2a>0\)vô lí vì a nguyên dương
Khả năng 2: \(\hept{\begin{cases}b+a=p\\b-a=p\end{cases}}\Rightarrow b+a=b-a\Rightarrow2a=0\Rightarrow a=0\)(Loại vì a nguyên dương, không thể bằng 0)
Khả năng 3: \(\hept{\begin{cases}b+a=p^2\left(3\right)\\b-a=1\left(4\right)\end{cases}}\)
Lấy (3) - (4), ta được: \(2a=p^2-1=\left(p+1\right)\left(p-1\right)\)
Vì p là số nguyên tố lớn hơn 3 (*) nên p không chia hết cho 3 nên \(p^2\)chia 3 dư 1\(\Rightarrow p^2-1⋮3\)
\(\Rightarrow2a⋮3\)mà \(\left(2,3\right)=1\)nên \(a⋮3\)(**)
Từ (*) suy ra p lẻ nên \(p-1\)và \(p+1\)là hai số chẵn liên tiếp
Đặt \(p-1=2k\left(k\inℕ,k>1\right)\)thì \(p+1=2k+2\Rightarrow\left(p-1\right)\left(p+1\right)=4k\left(k+1\right)\)
Vì \(k\left(k+1\right)\)là tích của hai số nguyên liên tiếp nên \(k\left(k+1\right)⋮2\)suy ra \(4k\left(k+1\right)⋮8\)
hay \(2a⋮8\Rightarrow a⋮4\)(***)
Từ (**) và (***) suy ra \(a⋮12\)do \(\left(3,4\right)=1\)(đpcm)
Vì \(2a=p^2-1\Rightarrow2\left(p+a+1\right)\) \(=2p+2a+2=2p+p^2-1+2=p^2+2p+1=\left(p+1\right)^2\)là số chính phương (đpcm)
n chia cho 7 dư 4 => n = 7k + 4 ( k là số tự nhiên)
n2 = (7k + 4)2 = 49k2 + 56k + 16 = 7(7k2 + 8k + 2) + 2 => n2 chia cho 7 dư 2
Ví dụ: p=5 thì (p+1)(p-1)=4x6=24
Vì (5+1)(5-1) (tức 24) chia hết cho 24 suy ra các số nguyên tố lớn hơn 3 thì đều chia hết cho 24(dpcm)
k đúng cho mk nha!
Đặt A = p + p +2 = 2p +2 = 2(p +1)
p +2 = p -1 +3
Xét 3 số liên tiếp : p -1 , p , p +1 có 1 và chỉ 1 số chia hết cho 3
Vì p nguyên tố lớn hơn 3 nên p không chia hết cho 3. Mặt khác p -1 không chia hết cho 3, vì nếu chia hết cho 3 thì p +2 chia hết cho 3, trái với gt là p +2 là số nguyên tố >3. Vậy chỉ còn p+1 chia hết cho 3 => 2(p +1) chia hết cho 3 tức A chia hết cho 3 (*)
Ta lại có p nguyên tố >3 nên p là số lẻ => p = 2k +1 => A = 4k + 4 chia hết cho 4 (**)
mà (3,4) =1 (***)
Từ (*) , (**), (***) => A chia hết cho 12
toi có cach khac