K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
23 tháng 10 2021

vì p và 2p +7 đều là số nguyên tố lớn hơn 3

nên cả hai đều không chia hết cho 3.

Giả sử: p chia 3 dư 1, thì 2p+7 chia hết cho 3 nên mâu thuẫn

vậy P chia 3 dư 2

khi đó 4p+7 chia hết cho 3, mà 4p+7 lớn hơn 3 nên

vậy 4p+7 là hợp số

24 tháng 10 2021

TL:

vì p và 2p +7 đều là số nguyên tố lớn hơn 3

nên cả hai đều không chia hết cho 3.

Giả sử: p chia 3 dư 1, thì 2p+7 chia hết cho 3 nên mâu thuẫn

vậy P chia 3 dư 2

khi đó 4p+7 chia hết cho 3, mà 4p+7 lớn hơn 3 nên

vậy 4p+7 là hợp số

^HT^

DD
24 tháng 10 2021

\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k+1\)hoặc \(p=3k+2\).

Với \(p=3k+1\)\(2p+7=2\left(3k+1\right)+7=6k+9⋮3\)mà \(2p+7>3\)nên không là số nguyên tố. 

Do đó \(p=3k+2\).

Khi đó \(4p+7=4\left(3k+2\right)+7=12k+15⋮3\)mà \(4p+7>3\)nên không là số nguyên tố. 

Ta có đpcm. 

24 tháng 10 2021

TL:

vì p và 2p +7 đều là số nguyên tố lớn hơn 3

nên cả hai đều không chia hết cho 3.

Giả sử: p chia 3 dư 1, thì 2p+7 chia hết cho 3 nên mâu thuẫn

vậy P chia 3 dư 2

khi đó 4p+7 chia hết cho 3, mà 4p+7 lớn hơn 3 nên

vậy 4p+7 là hợp số

^HT^

24 tháng 10 2021

Vì p > 3 => Đặt p = 3k + 1 ; p = 3k + 2 (k > 1)

Nếu p = 3k + 1

=> 2p + 7 = 2(3k + 1) + 7 = 6k + 9 = 3(2k + 3) \(⋮\)3

=> 2p + 7 là hợp số (loại) 

Nếu p = 3k + 2

=> 2p + 7 = 2(3k + 2) + 7 = 6k + 11 = 6(k + 1) + 5 (tm)

=> 4p + 7 = 4(3k + 2) + 7 = 12k + 15 = 3(4k + 5) \(⋮\)3  

=> 4p + 7 là hợp số (đpcm) 

4 tháng 6 2021

Theo đề ra: p là số nguyên tố lớn hơn 3 => p không chia hết cho 3

=> p = 3k + 1 hoặc p = 3k + 2

* Với p = 3k + 1 thì:

2p + 1 = 2 . ( 3k + 1 ) + 1 = 6k + 2 + 1 = 6k + 3 = 3 . ( 2k + 1 )

=> 2p + 1 chia hết cho 3

Ta có: 2p + 1 > 3

=> 2p + 1 là hợp số ( loại )

* Với p = 3k + 2 thì:

4p + 1 = 4 . ( 3k + 2 ) + 1 = 12k + 8 + 1 = 12k + 9 = 3 . ( 4k + 3 )

=> 4p + 1 chia hết cho 3

Ta có: 4p + 1 > 3

=> 4p + 1 là hợp số

Vậy ...

5 tháng 2 2022

\(p\)là số nguyên tố lớn hơn \(3\)nên \(p=3k+1\)hoặc \(p=3k+2\).

Với \(p=3k+1\)\(2p+7=2\left(3k+1\right)+7=6k+9⋮3\)mà \(2p+7>3\)nên không là số nguyên tố. 

Do đó \(p=3k+2\).

Khi đó \(4p+7=4\left(3k+2\right)+7=12k+15⋮3\)mà \(4p+7>3\)nên không là số nguyên tố. 

Ta có đpcm. 

11 tháng 11 2014

A , p là ; snt lớn hơn 3 nên p có dạng :3k + 1 hoặc 3k + 2

 xét trường hợp p=3k+1 ta có 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số) ,LOẠI

xét trường hợp p=3k+2 ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5 ( là snt theo đề bài nên ta chọn trường hợp này)

vậy 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9 ta thấy 12k và 9 đều chia hêt cho 3 nên (12k+9) là hợp số

do đó 4p + 1 là hợp số ( đpcm)

B ,  nếu p = 3k+1 thì 8p+1 = 8(3k+1)+1 = 24k + 8 +1 =24k+9 (chia hết cho 3 nên là hợp số) LOẠI

nếu  p = 3k + 2 thì 8p + 1 =8(3k+2) +1 =24k + 16 +1 =24k+17(là snt theo đề bài ) ta chọn t/ hợp này

vậy 4p +1 sẽ bằng 4(3k+2)+1 = 12k + 8 +1 =12k+9 (luân chia hết cho 3) nên là hợp số

chứng tỏ 4p+1 là hợp số (đpcm)

16 tháng 4 2016

Vì a và p là số nguyên tố lớn hơn 3 nên p sẽ có dạng : 3k+1

Nếu p= 3k+1 ta có 2p+1= 2(3k+1)+1= 6k+2+1=6k+2 là hợp số   (LOẠI)

VẬY ......................

19 tháng 6 2018

vì p là snt >3 suy ra p chỉ có hai dạng 3k+1 và 3k+2

th1 : nếu p =3k+1 thì 2p+1=2(3k+1)+1=6k+3(Vì 6k+3>3, và 6k+3 chia hết cho 3 nên 2k+1 là hợp số)

th2 : nếu p =3k+2 thì 4p+1=4(3k+2)+1=12k+9 ( ..........tự chứng minh.....

Vạy nếu p là..........................

19 tháng 6 2018

nobita hoc ngu bay dat lam

\