K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

xét M - N

chứng minh a^5 -a chia hết cho 30 

a( a^4 - 1) =a(a^2+ 1)(a-1)(a+1)=a(a^2-4+5)(a-1)(a+1)=(a-2)(a-1)a(a+1)(a+2)+5a(a-1)(a+1) chia hết cho 30 (vì tích 3 số nguyên liên tiếp

chia hết cho 6;tích 5 số nguyên liên tiếp chia hết cho 5)

M-N chia hết cho 30 

mà N chia hết cho 30 => M chia hết cho 30

6 tháng 4 2020

Xin chào bạn ! Mình là youtuber PUBG Takaz đây !

Bài 2: 

Gọi hai số cần tìm là a;a+1

Theo đề, ta có: 

\(\left(a+1\right)^2-a^2=2013\)

=>2a+1=2013

=>2a=2012

hay a=1006

Vậy: hai số cần tìm là 1006 và 1007

17 tháng 12 2015

a; Đặt A= \(a^{2017}+a^{2015}+1\)

\(=a^4\left(a^{2013}-1\right)+a^2\left(a^{2013}-1\right)+a^4+a^2+1\)=\(a^4\left(\left(a^3\right)^{671}-1\right)+a^2\left(\left(a^3\right)^{671}-1\right)+\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(\left(a^2+a+1\right)F\left(a\right)\) (trong đó F(a) là đa thức chứa a)

\(\Rightarrow A\) chia hết cho \(a^2+a+1\)

do \(a^2+a+1\) > 1 (dễ cm đc)

mà A là số nguyên tố

\(\Rightarrow A=a^2+a+1\)

hay \(a^{2017}+a^{2015}+1=a^2+a+1\)

\(\Leftrightarrow a\left(a\left(a^{2015}-1\right)+\left(a^{2014}-1\right)\right)=0\)

\(\Leftrightarrow a\left(a-1\right).G\left(a\right)=0\) ( bạn đặt nhân tử chung ra)

do a dương => a>0 => a-1=0=> a=1(t/m)

Kết Luận:...

chỗ nào bạn chưa hiểu cứ nói cho mình nha :3