K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2021

Bn có thể Tham khảo ở đường link này :

https://baitapsgk.com/lop-8/sbt-toan-lop-8/cau-16-trang-81-sach-bai-tap-sbt-toan-8-tap-1-chung-minh-rang-trong-hinh-thang-cac-tia-phan-giac-cua-hai-goc-ke-mot.html

13 tháng 7 2021

tôi xin bạn

 

29 tháng 8 2016

1 ) 

Xét hình thang ABCD (AB//CD) 

góc A + góc D =180 độ (2 góc trong cùng phía )

 góc B +góc C =180 độ
- Nếu góc A tù (> 90độ) => góc D nhọn 
- Nếu góc B tú => góc C nhọn 
=>  hình thang có nhiều nhất 2 góc tù, có nhiều nhất 2 góc nhọn

2 ) Giả sử ABCD là hình thang có đáy AB//CD 
Khi đó ta có góc A + góc D bằng 180 độ (2 góc kề 1 cạnh bên hình thang bù nhau) (Hoặc bạn hiểu là 2 góc trong cùng phía bù nhau đó) 
Vậy tia phân giác góc A nên bằng nửa góc A 
TIa phân giác góc D bằng nửa góc D 
Vậy Cộng 2 góc tia phân giác đó bằng 180độ chia 2 bằng 90 độ

29 tháng 8 2016

2,

Giả sử ABCD là hình thang có đáy AB//CD 
Khi đó ta có góc A + góc D bằng 180 độ (2 góc kề 1 cạnh bên hình thang bù nhau) (Hoặc bạn hiểu là 2 góc trong cùng phía bù nhau đó) 
Vậy tia phân giác góc A nên bằng nửa góc A 
TIa phân giác góc D bằng nửa góc D 
Vậy Cộng 2 góc tia phân giác đó bằng 180 độ chia 2 bằng 90 độ

12 tháng 8 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Giả sử hình thang ABCD có AB // CD

* Ta có: ∠ A 1 =  ∠ A 2 = 1/2 ∠ A (vì AE là tia phân giác của góc A)

∠ D 1 =  ∠ D 2 = 1/2  ∠ D ( Vì DE là tia phân giác của góc D)

A + D = 180 0  (2 góc trong cùng phía bù nhau)

Suy ra: ∠ A 1 +  ∠ D 1 = 1/2 ( ∠ A +  ∠ D) = 90 0

* Trong ΔAED, ta có:

∠ (AED) +  ∠ A 1 +  ∠ D 1 =  180 0  (tổng 3 góc trong tam giác)

⇒  ∠ (AED) =  180 0  – ( ∠ A 1 +  ∠ D 1 ) =  180 0  -  90 0  =  90 0

Vậy AE ⊥ DE.

21 tháng 8 2020

Cho tứ giác ABCD có các tia phân giác góc A và góc B vuông góc với nhau 

CM: tứ giác ABCD là hình thang

HOK TOT

29 tháng 6 2017

Hình thang

nên \(\widehat{A}_1+\widehat{D}_1=90^0\). \(\Delta ADE\)\(\widehat{A}_1+\widehat{D}_1=90^0\) nên \(\widehat{AED}=90^0\). Vậy \(AE\perp DE\)

2 tháng 9 2018

Hình thang

Giải sử hình thang ABCD có AB// CD

\(\widehat{A_1}=\widehat{A_2}=\dfrac{1}{2}\widehat{A}\left(gt\right)\)

\(\widehat{D_1}=\widehat{D_2}=\dfrac{1}{2}\widehat{D}\left(gt\right)\)

\(\widehat{A}+\widehat{D}=180^o\) (hai góc trong cùng phía bù nhau)

Suy ra:

\(\widehat{A}_1+\widehat{D_1}=\dfrac{1}{2}\left(\widehat{A}+\widehat{D}\right)=\dfrac{1}{2}.180^o=90^o\)

Trong ∆ AED ta có :

\(\widehat{AED}+\widehat{A_1}+\widehat{D_1}=180^o\) (tổng ba góc trong 1 tam giác)

\(\Rightarrow\widehat{AED}=180^o-\left(\widehat{A_1}+\widehat{D_1}\right)=180^o-90^o=90^o\)

\(\Rightarrow AE\perp ED\)

Vậy trong hình thang các tia phân giác của hai góc nhọn kề một cạnh bên vuông góc với nhau

20 tháng 8 2018

tứ giác có hai trục đối xứng cắt nhau thì các cặp cạnh đối bằng nhau (tính chất các đoạn thẳng đối xứng với nhau qua một đường thẳng). Vậy nó là hình bình hành (1)

Do các cặp cạnh đối song song với nhau mà lại đối xứng với nhau nên các cặp cạnh đối phải song song với trục đối xứng. Hai trục đối xứng vuông góc với nhau nên hai cạnh kề nhau phải vuông góc với nhau (2)

Từ (1) và (2) ta suy ra tứ giác đó là hình chữ nhât (theo định nghĩa)

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.Bài 4: a)Tính số đo của các góc trong...
Đọc tiếp

Bài 1: Cho tam giác ABC.Trên AC lấy 1 điểm B' sao cho AB'=AB, trên AC lấy điểm C' sao cho AC'=AC. CMR tứ giác BB'CC' là hình thang.

Bài 2:CMR: nếu 1 tứ giác có phân giác trong của hai góc kề với một cạnh vuông góc với nhau thì tứ giác đó là hình thang.

Bài 3: Cho hình thang ABCD(AB//CD). Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc cạnh đáy CD:. CM AD+BC=CD.

Bài 4: a)Tính số đo của các góc trong tứ giác ABCD, biết góc A:góc B:góc C:góc D=2:2:1:1.

b)Tứ giác ABCD là hình gì?Vì sao?

Bài 5:Cho tam giác ABC cân tại A. Kẻ các phân giác BD,CE của các góc B và C.

a)Cm: Tam giác ADB= tam giác AEC.

b)Cm: Tứ giác BEDC là hình thang cân có cạnh bên bằng 1/2 đáy.

Bài 6:Cho tam giác ABC vuông tại A có góc ABC=60 độ. Kẻ tia Ax song song với BC.Trên tia Ax lấy điểm D sao cho AD=BC.

a) Tính số đo các góc BAD và BAC.

b)Cm tứ giác ABCD là hình thang cân.

Mình đang cần gấp nên mong các bạn giải giùm mình. ^-^

2
12 tháng 6 2021

Bài 1:

a.

AB // CD

=> A + D = 1800 (2 góc trong cùng phía)

=> A = 1800 - D = 1800 - 540 = 1260

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 - C = 1800 - 1050 = 750

b.

AB // CD 

=> A + D = 1800 (2 góc trong cùng phía)

=> A = (1800 - 320) : 2 = 740

=> D = 1800 - 740 = 1060

AB // CD

=> B + C = 1800 (2 góc trong cùng phía)

=> B = 1800 : (1 + 2) . 2 = 1200

=> C = 1800 - 1200 = 600

Bài 2: 

a: Xét ΔABE và ΔACF có

góc ABE=góc ACF

AB=AC

góc A chung

Do đó: ΔABE=ΔACF

Suy ra: AE=AF

b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

=>BFEC là hình thang

mà CF=BE

nên BFEC là hình thang cân

c: Xét ΔFEB có góc FEB=góc FBE

nên ΔFEB cân tại F

=>FE=FB=EC

9 tháng 7 2016

2 phân giác góc A và góc B cắt nhau tại I.

Thì góc IAB và IBA phụ nhau.

=> DAB (=2IAB) và góc CBA (=2IBA) bù nhau.

=> DAB + CBA =180 độ.

Mà DAB và CBA ở vị trí trong cùng phia mà bù nhau => DA // CB

=> ABCD là hình thang.

Điều ngược lại:" Nếu ABCD là hình thang có AD // BC thì 2 tia phân giác của góc A và góc D sẽ vuông góc với nhau.

2 tia phân giác của góc B và góc C cũng vuông góc với nhau"

23 tháng 11 2021

D