Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nguyễn Minh Phương trẻ trâu quá giỏi làm đi ko làm đc thì câm ko làm đc mà oai thì ăn chửi
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
\(\Leftrightarrow\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x^2-yz}{x-xyz}=\frac{y^2-xz}{y-xyz}=\frac{x^2-y^2+xz-yz}{x-xyz-y+xyz}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\)
\(\Rightarrow\frac{x^2-yz}{x-xyz}=x+y+z\)
\(\Rightarrow x^2-yz=\left(x-xyz\right)\left(x+y+z\right)\)
\(\Rightarrow x^2-yz=x\left(x-xyz\right)+y\left(x-xyz\right)+z\left(x-xyz\right)\)
\(\Rightarrow x^2-yz=x^2-x^2yz+xy-xy^2z+xz-xyz^2\)
\(\Rightarrow-yz-xy-xz=-x^2yz-xy^2z-xyz^2\)
\(\Rightarrow-\left(yz+xy+xz\right)=-\left(x^2yz+xy^2z+xyz^2\right)\)
\(\Rightarrow yz+xy+xz=x^2yz+xy^2z+xyz^2\)
\(\Rightarrow yz+xy+xz=xyz\left(x+y+z\right)\)
Vậy nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\) thì \(yz+xy+xz=xyz\left(x+y+z\right)\)
Ta có \(xy+xz+yz=xyz\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z=\frac{xy+xz+yz}{xyz}\left(1\right)\)
Ta lại có \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}=\frac{x^2-yz-y^2+xz}{x\left(1-yz\right)-y\left(1-xz\right)}=\frac{\left(x-y\right)\left(x+y\right)+z\left(x-y\right)}{x-y}=\frac{\left(x-y\right)\left(x+y+z\right)}{x-y}=x+y+z\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)
Vậy ta có đpcm
\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-yz\right)}\)
\(\Rightarrow\left(x^2-yz\right)y\left(1-yz\right)=\left(y^2-xz\right)x\left(1-yz\right)\)
\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2=xy^2-x^2z-xy^3z+x^2yz^2\)
\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+x^2z+xy^3z-x^2yz^2=0\)
\(\Rightarrow xy\left(x-y\right)-xyz\left(x-y\right)\left(x+y+z\right)+z\left(x-y\right)\left(x+y\right)=0\)
\(\Rightarrow\left(x-y\right)\left[xy-xyz\left(x+y+z\right)+xz+yz\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\xy+yz+zx=0\end{cases}}\)
Mà \(x\ne y\) nên \(xy+xz+yz-xyz\left(x+y+z\right)=0\)
\(\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)
Đpcm
Từ gt ta có : (x2 - yz)y(1 - yz) = (y2 - xz)x(1 - yz)
=> 0 = VT - VP = (x2y - x3yz - y2z - xy2z2) - (xy2 - xy3z - x2z - x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)
= (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)(xy + yz + xz - xyz(x + y + z)]
Vì\(x\ne y\Rightarrow x-y\ne0\) nên xy + yz + xz - xyz(x + y + z) = 0 => xy + yz + xz = xyz(x + y + z)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!