Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I, K lần lượt là trung điểm của cạnh AB và CD
Qua K kẻ đường thẳng d // AB, trên d lấy A', B' sao cho K là trung điểm của A'B' và
KA' = IA
* Xét tam giác CKB’ và DKA’ có:
KC= KD ( giả thiết)
KB’= KA’( cách dựng)
( hai góc đối đỉnh )
=> ∆ CKB’ = ∆ DKA’ ( c.g.c)
=> B’C = A’D
*Xét tứ giác IBB’K có IB= KB’ và IB // KB’ ( cách dựng)
=> Tứ giác IBB’K là hình bình hành
=> BB’ // IK (1)
Chứng minh tương tự, ta có: AA’// IK (2)
Từ (1) và (2) suy ra: BB’// IK// AA’ (*)
Lại có:IK ⊥ CK
=> IK ⊥ (CKB') (**)
Từ (*) và (**) suy ra BB' ⊥ (CKB') ; AA' ⊥ (CKB')
⇒ BB' ⊥ B'C; AA' ⊥ A'D
* Xét hai tam giác vuông BCB’ và ADA’ có:
BB’ = AA’ (= IK)
CB’ = A’D (chứng minh trên)
=> ∆ BCB’ = ∆ ADA’ ( cạnh huyền –cạnh góc vuông)
=> BC= AD.
* Chứng minh tương tự, AC = BD
Đặt \(AB=CD=c\), \(BC=DA=a\) , \(AC=b\) và \(BD=d\)
Do N là trung điểm cạnh BD nên theo công thức tính độ dài đường trung tuyến, ta có :
\(AN^2=\frac{c^2+a^2}{2}-\frac{d^2}{4}\) và \(CN^2=\frac{a^2+c^2}{2}-\frac{d^2}{4}\)
Suy ra : \(NA^2-NC^2=0=MA^2-MC^2\)
Từ đó theo kết quả bài toán suy ra \(MN\perp AC\)
Lập luận tương tự ta cũng được \(MN\perp BD\)
Chứng minh tương tự, ta có tam giác AKD là tam giác cân tại K có KI là đường trung tuyến nên đồng thời là đường cao.
⇒ IK ⊥ AD (2)
Từ (1) và (2) suy ra; IK là đường vuông góc chung của hai đường thẳng AD và BC.
Hai tam giác ABC và BAD bằng nhau ( c.c.c) nên có các đường trung tuyến tương ứng bằng nhau: CM = DM
Ta có tam giác MCD cân tại M, do đó MN ⊥ CD vì N là trung điểm của CD. Tương tự ta chứng minh được NA = NB và suy ra MN ⊥ AB. Mặt phẳng (CDM) không vuông góc với mặt phẳng (ABN) vì (CDM) chứa MN vuông góc với chỉ một đường thẳng AB thuộc (ABN) mà thôi.
a: Gọi E là trung điểm của AB
ΔABC đều nên CE vuông góc AB
ΔABD đều nên DE vuông góc AB
=>AB vuông góc (CDE)
=>AB vuông góc CD
b: Xét ΔCAB có CN/CB=CM/CA
nên MN//AB và MN=1/2AB
Xét ΔDAB có DQ/DA=DP/DB
nên PQ//AB và PQ/AB=DQ/DA=1/2
=>MN//PQ và MN=PQ
=>MNPQ là hình bình hành
Xét ΔADC có AQ/AD=AM/AC
nên QM//DC
=>QM vuông góc AB
=>QM vuông góc QP
=>MNPQ là hình chữ nhật
Đặt \(\frac{AB}{CD}=k\)
Do AB // CD nên \(\frac{EA}{EC}=\frac{EB}{ED}=k\) và \(\frac{FA}{FD}=\frac{FB}{FC}=k\) (như hình vẽ)
Suy ra : \(\overrightarrow{EA}=-k\overrightarrow{EC}\), \(\overrightarrow{EB}=-k\overrightarrow{ED}\) , \(\overrightarrow{FA}=-k\overrightarrow{FD}\) và \(\overrightarrow{FB}=-k\overrightarrow{FC}\)
Do M là trung điểm AB và N là trung điểm CD nên :
\(2\overrightarrow{EM}=\overrightarrow{EA}+\overrightarrow{EB}=-k\overrightarrow{EC}-k\overrightarrow{ED}=-2\left(\overrightarrow{EC}+\overrightarrow{ED}\right)=-2k\overrightarrow{EN}\)
Suy ra \(\overrightarrow{EM}=k\overrightarrow{EN}\) (1)
Hoàn toàn tương tự cũng được \(\overrightarrow{FM}=k\overrightarrow{FN}\) (2)
Từ (1) và (2) suy ra điều cần chứng minh