K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2016

Ta có: 2bd = c(b + d)

=> (a + c).d = bc + cd

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

15 tháng 1 2018

Ta có : 2bd = c (b + d )

=) ( a + c ). d = bc + cd

=) ad + cd = bc + cd

=) ad = bc

=) a/b = c/ d ( đpcm)

9 tháng 2 2018

Ta có 2bd=c(b+d) \(=>\frac{2b}{c}=\frac{b+d}{d}\)

Mà a+c=2b nên \(\frac{a+c}{c}=\frac{b+d}{d}=>\frac{a+c}{b+d}=\frac{c}{d}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

Vậy \(\frac{a}{b}=\frac{c}{d}\)

20 tháng 10 2021

\(2bd=c\left(b+d\right)\Rightarrow2b=\frac{c\left(b+d\right)}{d}\)

\(\Rightarrow a+c=\frac{c\left(b+d\right)}{d}\Rightarrow\frac{a+c}{c}=\frac{b+d}{d}\Rightarrow\frac{a}{c}+1=\frac{b}{d}+1\)

\(\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}\)

20 tháng 10 2021

Ta có: 

\(a+c=2b_{\left(1\right)}\)

\(2bd=c\left(b+d\right)_2\)

Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\left(a+c\right).d=c.\left(b+d\right)\)

\(\Rightarrow\)\(ad+cd=cb+cd\)( tính chất phân phối )

\(\Rightarrow\)\(ad=bc\)( rút gọn cả 2 vế cho \(cd\))

\(\Rightarrow\)\(\frac{a}{b}=\frac{c}{d}\)( tính chất cơ bản của tỉ lệ thức )

\(\Rightarrow\)\(\left(đpcm\right)\)

1 tháng 9 2019

\(a+c=2b\Rightarrow2bd=ad+cd=c\left(b+d\right)=bc+cd\)

\(\Rightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Lúc đó: \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=2\left(\frac{10.bk+dk}{10b+d}\right)^2-\left(\frac{bk}{b}\right)^2\)

\(=2k^2-k^2=k^2\)(1)

và \(\left(\frac{c}{d}\right)^2=\left(\frac{dk}{d}\right)^2=k^2\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)(đpcm)

28 tháng 9 2015

câu hỏi tương tự nha bạn.

30 tháng 1 2017

a + c  =2b ( 1 )

2bd = c(b+d) ( 2)

từ (1) và (2) ta được:

( a+ c ) .d = c.( b + d )

theo tính chất phân phối ta có"

ad + cd = cb + cd

=> ad = cb => a/b = c/d

k mknhes