Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Sửa đề :
CMR : Nếu a/b < c/d (b,d thuộc N*) thì a/b < a+c/ b+d < c/d
#)Giải :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{cb}{bd}\)
Vì b, d thuộc N* => ad < bc
=> ad + ab < bc + ab => a( b + d ) < b( a + c ) => \(\frac{a}{b}< \frac{a+c}{b+d}\)
Tương tự, ta có :
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\left(đpcm\right)\)
Do a/b < 1 => a < b
=> a.c < b.c
=> a.c + a.b < b.c + a.b
=> a.(b + c) < b.(a + c)
=> a/b < a+c/b+c
=> đpcm
Ủng hộ mk nha bn ♡_♡, bài mk đúng 100% lun, cái này lớp 6 học rùi mà
Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc
Suy ra :
\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)
Mặt khác : ad < bc => ad + cd < bc + cd
\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)
Vậy : ....
b, Theo câu a ta lần lượt có :
\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)
\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)
\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)
Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
Chứng minh rằng nếu a^2=bc thì a^2+c^2/b^2+a^2=c/b
ta có: \(\frac{a^2+c^2}{b^2+a^2}\)do \(a^2=bc\)
=>\(\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
vậy \(\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
\(\text{Ta có : }\frac{a^2+c^2}{b^2+a^2}\text{ do }a^2=bc\)
\(\Rightarrow\frac{a^2+c^2}{b^2+a^2}=\frac{b.c+c.c}{b.b+b.c}=\frac{c.\left(b+c\right)}{b.\left(b+c\right)}=\frac{c}{b}\)
\(\text{Vậy }\frac{a^2+c^2}{b^2+a^2}=\frac{c}{b}\)
b < c
\(\Rightarrow\dfrac{1}{b}>\dfrac{1}{c}\)
Vì n là số dương
\(\Rightarrow\dfrac{a}{b}>\dfrac{a}{c}\)
Ta có: b<c
\(\Rightarrow\)ab<ac
\(\Rightarrow\)\(\dfrac{a}{c}< \dfrac{a}{b}\)(tính chất của 2 phân số)
CHO MÌNH 1 TICK NHA