Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 / Ta chứng minh phản chứng
Giả sử tồn tại a thoả mãn a không phải là số chính phương và căn a là số hữu tỉ ( không vô tỉ thì hữu tỉ chứ còn gì :v )
Tức là căn a biểu diễn dưới dạng m/n ( với m, n là số nguyên, n khác 0 )
căn a = m/n GCD ( m,n ) = 1 ( ước chung lớn nhất của m, n là 1 hay m/n là phân số tối giản )
suy ra a = (m/n)^2 (*)
1/ Giả sử a là số nguyên tố
m^2 = a x n^2
Suy ra m^2 chia hết cho a
mà a là số nguyên tố
suy ra m chia hết cho a
Suy ra m có dạng a x k
Thay vào (*) được a = ((a x k) / n)^2
Suy ra (a x k)^2 = a x n^2
Suy ra a k^2 = n^2
Suy ra n^2 chia hết cho a
Suy ra n chia hết cho a
Vậy m,n cùng chia hết cho a, trái với giả thiết GCD (m,n) = 1. Tức là không tồn tại a
2/ a không phải là số nguyên tố
Tức là a = p x q ( p là số nguyên tố, q là số nguyên dương )
p x q = (m/n)^2
Hay m^2 = p x q x n^2
Đến đây lại suy ra m^2 chia hết cho p nguyên tố
Quay lại chứng minh tương tự như phần 1 ( coi p như a là ổn )
Giả sử √aa là số hữu tỉ .
Đặt √a=pqa=pq (p; q ∈∈ N; q khác 0 và (p;q) = 1)
=> a=p2q2a=p2q2 => a.q2 = p2
Vì p2 là số chính phương nên a.q2 viết được dưới dạng tích của các số với lũy thừa bằng 2
Mà p; q nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)
=> Điều giả sử sai
Vậy √aa là số vô tỉ
Giả sử \(\sqrt{a}\) là một số hữu tỉ thì \(\sqrt{a}\)=\(\frac{m}{n}\) với (m,n)=1
Khi đó \(a^2=\frac{m^2}{n^2}\)
Vì a là số tự nhiên nên \(m^2⋮n^2\)
hay là \(m⋮n\) ( trái với điều kiện (m,n)=1)
=> ĐPCM
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.
Do n không chính phương nên trong phân tích ra thừa số nguyên tố của n có ít nhất một thừa số p với số mũ lẻ, viết n=m^2.k với k không chia hết cho số chính phương nào, dễ thấy p chia hết k.
Vậy Căn (n) = m.Căn (k) do đó chỉ cần chứng minh Căn (k) vô tỷ.
Bây giờ giả sử Căn (k) = a/b với (a,b) = 1 => k.b^2 = a^2
=> p chia hết a^2, vì p nguyên tố nên p chia hết a, dẫn đến p^2 chia hết a^2.
Như vậy b^2 phải chia hết cho p vì k không chia hết cho p^2, dẫn đến p chia hết b, điều này chứng tỏ (a,b) = p > 1. (Mâu thuẫn)
Tóm lại Căn (k) là vô tỷ, nói cách khác Căn (n) vô tỷ.
Trả lời:
+ Giả sử \(\sqrt{a}\notin I\)
\(\Rightarrow\sqrt{a}\inℚ\)
\(\Rightarrow a=\frac{m}{n}\)với\(\left(m,n\right)=1;m,n\inℕ\)
+ Vì a không là số chính phương
\(\Rightarrow\sqrt{a}\notinℕ\)
\(\Rightarrow\frac{m}{n}\notinℕ\)
\(\Rightarrow n>1\)
+ Vì \(\sqrt{a}=\frac{m}{n}\)
\(\Rightarrow a=\frac{m^2}{n^2}\)
\(\Rightarrow m^2=an^2\)
+ Vì \(n>1\)
\(\Rightarrow\)Giả sử n có ước nguyên tố là p
Mà\(n\inℕ\)
Mà\(m^2=an^2\)
\(\Rightarrow m⋮p\)
\(\Rightarrow\)m,n có ƯC là p (Trái với giả thiết (m,n) = 1)
\(\Rightarrow\)Giả sử \(\sqrt{a}\notin I\)sai
\(\Rightarrow\sqrt{a}\in I\)
Vậy nếu số tự nhiên a không phải là số chính phương thì\(\sqrt{a}\)là số vô tỉ.
Hok tốt!
Good girl
Giả sử \(\sqrt{a}\) là số hữu tỉ thì nó viết được dưới dạng:
\(\sqrt{a}\) = \(\dfrac{m}{n}\) với m,n \(\in\)N, (m,n) = 1
Do a không là số chính phương nên \(\dfrac{m}{n}\) không là số tự nhiên , do đó n > 1
Ta có:
m2= a.n2.
Gọi p là ước nguyên tố nào đó của n , thì m2\(⋮\) p , do đó m \(⋮\) p . Như vậy p là ước nguyên tố của m và n, trái với (m,n)=1
Vậy \(\sqrt{a}\) phải là số vô tỉ
Giả sử \(\sqrt{a}\) là số hữu tỉ .
Đặt \(\sqrt{a}=\dfrac{x}{y}\) [\(x;y\in N\),\(y\ne0\) và \(\left(x;y\right)=1\)]
\(\Rightarrow a=\dfrac{x^2}{y^2}\Rightarrow a\cdot y^2=x^2\)
Vì x2 là 1 số chính phương nên a.y2 viết được dưới dạng tích của các số với lũy thừa bằng 2
Mà x; y nguyên tố cùng nhau nên a viết được dưới dạng lũy thừa bằng 2 => a là số chính phương (trái với giả thiết)
=> Giả thiết này sai
=>\(\sqrt{a}\) là 1 số vô tỉ
Gọi hai số lẻ bất kỳ là 2k+1 và 2a+1
\(\left(2k+1\right)^2+\left(2a+1\right)^2\)
\(=4k^2+4k+1+4a^2+4a+1\)
\(=4k^2+4a^2+4k+4a+2\) không là số chính phương
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12