Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
a1 = 1
a2 = 1 + 2 = 3
a3 = 1 + 2 + 3 = 6
a4 = 1 + 2 + 3 + 4 = 10
......
a100 = 1 + 2 + 3 + ..... + 100 = \(\frac{100.\left(100+1\right)}{2}=50.101=5050\)
an = 1 + 2 + 3 + ..... + n = \(\frac{n\left(n+1\right)}{2}\)
2 ) đề sai rùi bạn ơi ! Mk giải theo đề đúng nka !!
CMR : nếu \(a+b>1\)thì \(a^2+b^2>\frac{1}{2}\)
Ta có : \(a+b>1>0\) ( 1 )
Bình phương hai vế ta được :
\(\left(a+b\right)^2>1\)\(\Leftrightarrow a^2+2ab+b^2>1\) ( 2 )
Mặt khác :
\(\left(a-b\right)^2\ge0\)\(\Leftrightarrow a^2-2ab+b^2\ge0\) ( 3 )
Cộng từng vế của (2) và (3) , ta được:
\(2a^2+2b^2>1\)\(\Leftrightarrow2\left(a^2+b^2\right)>1\)\(\Leftrightarrow a^2+b^2>\frac{1}{2}\left(dpcm\right)\)
tk cko mk nka vì công ngồi đánh máy tình !!!
Biết \(a>b\)và \(b>2\)\(\Leftrightarrow a>2\)
Ta có : \(a>2\)
\(\Leftrightarrow-3a< -6\)( Nhân 2 vế với -3 bất đẳng thức đổi chiều )
\(\Leftrightarrow-3a+6< 0\)(Cộng 2 vế với 6)
\(\Leftrightarrowđpcm\)
tk nka !1
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+2axby+b^2y^2\)
\(\Leftrightarrow a^2y^2-2axby+b^2x^2=0\)
\(\Leftrightarrow\left(ay-bx\right)^2=0\Leftrightarrow ay-bx=0\Leftrightarrow ay=bx\Leftrightarrow\frac{a}{x}=\frac{b}{y}\)
\(a\in N\Rightarrow\hept{\begin{cases}a^2+a+1\in N\\a^2+a+2\in N\end{cases}}\)
Dễ thấy a2+a+1 và a2+a+2 là 2 số tự nhiên liên tiếp, trong 2 số này có 1 số chia hết cho 2
=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)\) là số chẵn
=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) cũng là số chẵn
=> \(\left(a^2+a+1\right)\left(a^2+a+2\right)-12\) là hợp số (đpcm)
Số 2 là số lẻ => dpcm