K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2017

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

6 tháng 11 2019

Câu hỏi của luu thi thao ly - Toán lớp 8 - Học toán với OnlineMath

ta có 

\(\left(2n-1\right)^3-2n-1\)

\(=2n.\left(2n-2\right).\left(2n-2\right)\)

\(=8n.\left(n-1\right)^2⋮8\)

21 tháng 7 2019

\(\left(2n+1\right)^3-(2n+1)\)

\(=\left(2n-2\right)\left(2n-2\right)2n\)

\(=8n\left(n-1\right)^2⋮8\)

9 tháng 9 2018

Dễ mà.

       \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\) 

\(-5n⋮5\forall n\in Z\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\forall n\in Z\)

Chúc bạn học tốt.

11 tháng 10 2021

\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\) (vì là 3 số nguyên lt)

11 tháng 10 2021

\(n^3+3n^2+2n-n\left(n^2+3n+2\right)\)

\(=n\left[n\left(n+1\right)+2\left(n+1\right)\right]=n\left(n+1\right)\left(n+2\right)\)

Là tích 3 số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3

\(\Rightarrow n^3+3n^2+2n=n\left(n+1\right)\left(n+2\right)⋮2.3=6\forall n\in Z\)

27 tháng 9 2018

  n(2n-3)-2n(n+1) 

=2n^2-3n-2n^2-2n 
=-5n 
-5n chia hết cho 5 vs mọi số nguyên n vì -5 chia hết cho 5 
vậy n(2n-3)-2n(n+1) chia hết cho 5

k mk nhak

Thanks <3

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

AH
Akai Haruma
Giáo viên
3 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)