K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2020

Bài chỉ chứng minh vế phải chia hết vế trái chứ k tìm n hay a nhé bạn

AH
Akai Haruma
Giáo viên
11 tháng 9 2020

Nguyễn Ngọc Phương: Mình đâu có tìm $n,a$ đâu hả bạn? Mình đang chỉ ra TH sai mà???

Chả hạn, chứng minh $n(n+1)(n^2+1)\vdots 5$ thì có nghĩa mọi số tự nhiên/ nguyên $n$ đều phải thỏa mãn. Nhưng chỉ cần có 1 TH $n$ thay vào không đúng nghĩa là đề không đúng rồi.

14 tháng 8 2019

\(b,n^2\left(n^4-1\right)\)

\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)

Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp

\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)

\(\Rightarrowđpcm\)

=> 

AH
Akai Haruma
Giáo viên
12 tháng 1 2020

Lời giải:

Đặt biểu thức đã cho là $A$

$\bullet$ Chứng minh $A\vdots 5$

Ta nhớ đến tính chất quen thuộc là: Một số chính phương khi chia cho $5$ có dư là $0,1,4$

Do đó, với $a$ là số nguyên không chia hết cho $5$ thì $a^2$ chia $5$ dư $1$ hoặc $4$

Hay $a^2\equiv \pm 1\pmod 5$

$\Rightarrow a^4\equiv 1\pmod 5\Rightarrow a^4-1\equiv 0\pmod 5$

$\Rightarrow A=(a^4-1)(a^4+15a^2+1)\equiv 0\pmod 5$

Hay $A\vdots 5(*)$

----------------------

Chứng minh $A\vdots 7$

$A=(a^4-1)(a^4+a^2+1)+14a^2(a^4-1)$

$=(a^2+1)(a^6-1)+14a^2(a^4-1)$

Ta nhớ đến tính chất quen thuộc: Một số lập phương khi chia cho $7$ có dư $0,1,6$

Do đó, với $a$ là số không chia hết $7$ thì $a^3$ chia $7$ có thể dư $1,6$

Hay $a^3\equiv \pm 1\pmod 7$

$\Rightarrow a^6\equiv 1\pmod 7\Rightarrow a^6-1\equiv 0\pmod 7$

$\Rightarrow A=(a^2+1)(a^6-1)+14a^2(a^4-1)\equiv 0\pmod 7$

Hay $A\vdots 7(**)$

Từ $(*); (**)\Rightarrow A\vdots 35$

14 tháng 8 2016

giải câu c nha

xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)

Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6

tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6

\(\Rightarrow\)A chia hết cho 6

=> a3+b3+c3 -a-b-c chia hết cho 6

mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6

k cho tớ xog tớ giải hai câu còn lại cho nha

14 tháng 8 2016

a/ n- n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6

11 tháng 3 2018

Mình có cách hay hơn nha !

Xét 2^n.(2^n+1).(2^n+2)

Ta thấy 2^n;2^n+1;2^n+2 là 3 số tự nhiên liên tiếp nên trong 3 số có 1 số chia hết cho 3

=> 2^n.(2^n+1).(2^n+2) chia hết cho 3

Mà 2^n và 3 là 2 số nguyên tố cùng nhau

=> (2^n+1).(2^n+2) chia hết cho 3

Tk mk nha

11 tháng 3 2018

Đây là KQ của mik

Ta có: \(\left(2^n+1\right)\left(2^n+2\right)\)

\(=4^n+2^n\left(1+2\right)+2\)

Suy ra: \(=\left(4^n+2\right)+3\cdot2^n\)

Mặt khác: \(4^n\equiv1\)(mod 3)

Suy ra: \(\left(2^n+1\right)\left(2^n+2\right)\equiv3+3\cdot2^n=3\left(2^n+1\right)\)(mod 3)

Vậy: .....................

1 tháng 11 2018

Ta có: \(2\equiv-1\left(mod 3\right)\Rightarrow2^n\equiv\left(-1\right)^n\left(mod3\right)\)

Vì n là số tự nhiên nên n có dạng 2k hoặc 2k + 1 (k là số tự nhiên)

+) Nếu n có dạng 2k \(\Rightarrow2^n\equiv\left(-1\right)^n\equiv\left(-1\right)^{2k}\equiv\left[\left(-1\right)^2\right]^k\equiv1\left(mod3\right)\Rightarrow2^n-1\equiv0\left(mod3\right)\Rightarrow2^n-1⋮3\Rightarrow A⋮3\)

Nếu n có dạng 2k + 1 \(\Rightarrow2^n\equiv\left(-1\right)^{2k+1}\equiv\left(-1\right)^{2k}.\left(-1\right)\equiv-1\left(mod3\right)\Rightarrow2^n+1\equiv0\left(mod3\right)\Rightarrow2^n+1⋮3\Rightarrow A⋮3\)

27 tháng 3 2022

tra gút gồ đe=))

27 tháng 3 2022

lười