K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2018

đặt M là n^3 -9n^2+2n.

TH1 : n có dạng 2k => M chia hết cho 2 (bạn  tự cm)

TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n

=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)

Xét n có dạng 3k => M chia hết cho 3

Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3

Tương tự bạn xét n =3k+2....

=> M chia hết cho 3 vs mọi n (2)

Từ (1) (2) => M chia hết cho 6

17 tháng 8 2018

còn cách lm khác k bạn?

22 tháng 1 2022

- Chắc là gọi thầy Nguyễn Việt Lâm thôi :)

NV
22 tháng 1 2022

1.

\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)

\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ

\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)

\(\Rightarrow n=4b\left(b+1\right)\)

Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn

\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)

Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1

Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2

\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1

\(\Rightarrow n⋮3\)

\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau

18 tháng 7 2018

a) 2n^3 + 2n^2 - 2n^3 - 2n^2 + 6n = 6n chia hết 6

b) 3n - 2n^2 - ( n + 4n^2 - 1 - 4n ) - 1 

= 3n - 2n^2 - n - 4n^2 + 1 + 4n -1

= 6n - 6n^2 chia hết 6

c) m^3 + 8 - m^3 + m^2 - 9 - m^2 - 18

= - 19

18 tháng 7 2018

Bài 1:

\(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n\left(n^2+n-n^2-n+3\right)\)

\(=6n\)\(⋮\)\(6\)
Bài 2:

\(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1\)

\(=3n-2n^2-\left(n+4n^2-1-4n\right)-1\)

\(=6n-6n^2=6\left(n-n^2\right)\)\(⋮\)\(6\)

Bài 3:

\(\left(m^2-2m+4\right)\left(m+2\right)-m^3+\left(m+3\right)\left(m-3\right)-m^2-18\)

\(=m^3+8-m^3+m^2-9-m^2-18\)

\(=-19\)

\(\Rightarrow\)đpcm

Bài 1:

Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)

\(=2n^3+2n^2-2n^3-2n^2+6n\)

\(=6n⋮6\)

2 tháng 10 2021

1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)

2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)

19 tháng 7 2018

bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...)  hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !

bạn hãy nhân đa thức với đa thức nhé !

Mình hướng dẫn bạn rồi đấy ! ok!

k nha !

19 tháng 7 2018

Ai đó làm ơn giúp tớ đi, rất gấp đó !!!!!!!

17 tháng 6 2016

A = n2(n + 1) + 2n(n+1) = n(n+1)(n+2)

Ta thấy A là tích của 3 số tự nhiên liên tiếp nên nó chia hết cho 3

Và n(n+1) luôn chia hết cho 2 vì là tích của 2 số tự nhiên liên tiếp nên A chia hết cho 2.

Số A vừa chia hết cho 2 vừa chia hết cho 3 nên A chia hết cho 2*3 = 6 . ĐPCM

17 tháng 6 2016

Đinh Thùy Linh Bạn cần bổ sung thêm nữa : 

\(\left(2,3\right)=1\)

27 tháng 9 2018

  n(2n-3)-2n(n+1) 

=2n^2-3n-2n^2-2n 
=-5n 
-5n chia hết cho 5 vs mọi số nguyên n vì -5 chia hết cho 5 
vậy n(2n-3)-2n(n+1) chia hết cho 5

k mk nhak

Thanks <3

ta có 

\(\left(2n-1\right)^3-2n-1\)

\(=2n.\left(2n-2\right).\left(2n-2\right)\)

\(=8n.\left(n-1\right)^2⋮8\)

21 tháng 7 2019

\(\left(2n+1\right)^3-(2n+1)\)

\(=\left(2n-2\right)\left(2n-2\right)2n\)

\(=8n\left(n-1\right)^2⋮8\)