Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 7 số đó lần lượt là a1 , a2 , ... , a7 .
Ta chọn được hai số có tổng chia hết cho 2, chẳng hạn a1 + a2 = 2k1 . Còn lại 5 số, lại chọn được hai số có tổng chia hết cho 2, chẳng
hạn a3 + a4 = 2k2
Còn lại 3 số, lại chọn được hai số có tổng chia hết cho 2, chẳng hạn a5 + a6 = 2k3
Xét ba số k1 , k2 , k3 ta chọn được hai số có tổng chia hết cho 2, chẳng hạn k1 + k2 = 2q
Như vậy : 2k1 + 2k2 = 4q hay a1 + a2 + a3 + a4 = 4q \(⋮\)4
Gói 7 thì lần lượt sẽ là :"
a1 , a2 ... => a7 .
Chọn đc 2 số có tổng chia hết cho 2 là : ( ví dụ )
a1 + a2 = 2k1
Vậy còn lại 5 số ! tiếp tục chọn tổng số chia hết cho 2
a3 + a4 = 2k2
Còn lại 3 số ! : a5 + a6 = 2k3
3 số : ta sẽ chọn số chia hết cho 2 :
Như vậy ta có thể làm :
k1 + k2 = 2q
2k1 + 2k2 = 4q
a1 + a2 + a3 + a4 = 4q : 4
Đáp số : .....
Câu hỏi của Nguyễn Phương Chi - Toán lớp 6 - Học toán với OnlineMath
Tìm x :
a) ( x - 15 ) . 35 = 0
x - 15 = 0 : 35
x - 15 = 0
x = 0 + 15
x = 15
b) 32 ( x - 10 ) = 32
x - 10 = 32 : 32
x - 10 = 1
x = 1 + 10
x = 11
Giả sử không tìm được số nào trong n số tự nhiên liên tiếp đã cho mà chia hết cho n. Khi đó n số này chia cho n chỉ nhận được nhiều
nhất là \(n-1\) số dư khác nhau \(\left(1;2;3;.....;n-1\right)\), theo nguyên lí Dirichlet tồn tại hai số chia cho n có cùng số dư, chẳng
hạn là a và b với a > b, khi đó a - b chia hết cho n, điều này mâu thuẫn với \(0< a-b< n\). Từ đó suy ra điều phải chứng minh.
vd:1,2,3,4,5,6 trong đó có số 6 chia hết cho 6
vd:11,12,13,14,15,16 trong đo có số 12 chia hết cho 6
Gọi 5 số đó là a; a+1; a+2 ;a+3; a+4;a+5;a+6
Ta có
a+6-a=5 chia hết cho 5
Câu b
Ta có
13.12 + 26.17=13.12+2.13.17=13(12+2.17)=13.46 luôn chia hết cho 13.23
nhớ tick mình nha
ai cũng có thể giải đươc. Ai nhanh minh k
có : \(n^3-7n=n^3-n-6n=n\left(n-1\right)\left(n+1\right)-6n\) mà n,n-1,n+1 là 3 số tự nhiên liên tiếp nên tích của chúng chia hết cho 6 và 6n chia hết cho 6 nên ta có điều phải chứng minh.