K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2017

 giả sử tồn tại số hữu tỉ có bình phương bằng 2 

coi số đó là a/b ( a;b thuộc N*,(a;b)= 1)

ta có (a/b)^2 = 2 => a^2 = 2 b^2 => a^2 chia hết cho 2 => a^2 chia hết cho 4 => b^2 chia hết cho 2 => b chia hết cho 2 => UC(a;b)={1;2}

=> trái vs giả sử => ko tồn tại hữu tỉ có bình phương bằng 2 

CM tương tự vs 3 và 6 nhé

23 tháng 8 2016

Ta sẽ chứng minh bằng phương pháp phản chứng .

Giả sử có tồn tại một số hữu tỉ \(\frac{x}{y}\left(x;y\in Z;\left(x;y\right)=1\right)\) sao cho \(\frac{x}{y}=\sqrt{2}\)

\(\Rightarrow\frac{x^2}{y^2}=2\)

\(\Rightarrow\frac{x^2}{2}=y^2\)

Mà y là số nguyen => y^2 là số nguyên

\(\Rightarrow x^2⋮2\) 

\(\Rightarrow x^2⋮4\)

Mặt khác \(x^2=2y^2\)

=> \(2y^2⋮4\)

\(\Rightarrow y^2⋮4\)

=> \(ƯC_{\left(x;y\right)}=4\)

Trái với giả thiết

=> Không tồn tại số hữu tỉ nào mà bình phương lên bằng 2

23 tháng 8 2016

Thực sự cảm ơn rất nhìu !

27 tháng 6 2015

Ta có:12=22.3

=>Số có bình phương bằng 12 là 2.\(\sqrt{3}\)

Do \(\sqrt{3}\) không phải số hữu tỉ nên =>2.\(\sqrt{3}\)không phải số hữu tỉ

=>không có số hữu tỉ nào có bình phương bằng 12

4 tháng 12 2015

\(x^2=2013\Leftrightarrow x=\sqrt{2013};x=-\sqrt{2013}\)

+ Giả sử có  x = a/b  ; với a;b thuộc Z ;b khác 0 và (a;b) =1=> \(\sqrt{2013}=\frac{a}{b}\Leftrightarrow a^2=2013.b^2\)=> a chia hết cho 2013 

a =2013k => (2013k)2 =2013.b2 => 2013.k2 =b2 => b chia hết cho 2013

=> (a;b) =2013 => Trái với giả sử (a;b) =1

=> x không là số hữu tỉ => x là số vô tỉ

 

5 tháng 7 2019

ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)

mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)

chúc bạn học tốt

5 tháng 7 2019

#)Giải :

Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6

Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)

\(\Rightarrow a^2=6b^2\)

\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)

Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)

Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6

=> đpcm

tích mình đi

ai tích mình 

mình tích lại 

thanks

8 tháng 1 2019

cho tam giác ABC có AB=5cm,AC=7cm,đường trung tuyến AM.Lấy điểm E thuộc cạnh AB,điểm F thuộc cạnh AC sao cho AE=AF=3cm.Gọi I là giao điểm của EF và AM.CMR:I là trung điểm của AM

23 tháng 5 2018

Gọi a là số bình phương lên bằng 2

Gọi b là số bình phương lên bằng 3

Ta có : \(a^2=2\)và \(b^2=3\)

\(\Rightarrow a=\sqrt{2}\)và \(b=\sqrt{3}\)

Mà \(\sqrt{2}\)và \(\sqrt{3}\)là số vô tỉ

Nên \(a;b\notin Z\)

Vậy không có số hữu tỉ nào bình phương bằng 2 và 3 

_Chúc bạn học tốt_

23 tháng 5 2018

vào câu hỏi tương tự bạn nhé