K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2021

DEO AI BT DAU A.Zay nen tu lam nha.

8 tháng 2 2020

Giả sử trong 100 số đó k có 2 số nào bằng nhau thì

\(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+...+\frac{1}{\sqrt{a_{100}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}\)

+ Ta có : \(\frac{1}{\sqrt{n}}=2.\frac{1}{\sqrt{n}+\sqrt{n}}< 2.\frac{n-\left(n-1\right)}{\sqrt{n-1}+\sqrt{n}}=2\left(\sqrt{n}-\sqrt{n-1}\right)\)

Do đó: \(A\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}< 1+2\left(\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}\right)\)

\(\Rightarrow A< 1+2\left(\sqrt{100}-1\right)\Rightarrow A< 19\) ( trái vs giả thiết )

=> điều giả sử là sai => đpcm