Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi trực tâm là giao điểm của ba đường cao trong tam giác
Còn trực tâm của 3 điểm thì mình chưa nghe bao giờ.
Kéo dài BO' cắt (O') tại J; kéo dài CA cắt BD tại I.
Ta thấy bời vì hai đường tròn cùng bán kính nên OAO'B là hình thoi. Vậy thì OA // BO' hay OA // O'J
Lại có do DCOO' là hình bình hành nên OC // O'D
Vậy thì \(\widehat{COA}=\widehat{DO'J}\)
Ta có \(\widehat{ICB}+\widehat{CBI}=\widehat{ICB}+\widehat{CBA}+\widehat{ABD}=\frac{sđ\widebat{AB}+sđ\widebat{CA}+sđ\widebat{AD}}{2}\)
\(=\frac{sđ\widebat{BA}+sđ\widebat{AD}}{2}+\frac{\widehat{COA}}{2}=\frac{sđ\widebat{BD}+\widehat{COA}}{2}\)
\(=\frac{\widehat{BO'D}+\widehat{DO'J}}{2}=\frac{180^o}{2}=90^o\)
Vậy thì \(\widehat{CIB}=90^o\Rightarrow CA\perp BD\)
Lại có theo tính chất đường nối tâm, \(AB\perp OO'\) mà OO' // CD nên \(BA\perp CD\)
Xét tam giác BCD có \(CA\perp BD;BA\perp CD\) nên A là trực tâm tam giác BCD.
Ta có hình vẽ và các điểm tương ứng. Gọi x là chiều rông 2 con đường, đk : 0<x<15
Hình thang GHIK là hình thang cân, có đáy lớn cộng đáy nhỏ bằng 2MN = AB + DC = 80
Vậy \(S_{GHIK}=\frac{80.2x}{2}=80x\)
PQRS là hình bình hành nên diện tích bằng: \(2x.35=70x\)
Phần gạch chéo là hình bình cạnh đáy 2x, chiều cao 2x nên diện tích là \(2x.2x=4x^2\)
Vậy diện tích hình GPQHIRSK bằng: \(S_{GHIK}+S_{PQRS}\)- S phần gạch chéo = \(80x+70x-4x^2=\frac{1}{4}\frac{80.35}{2}\Rightarrow-4x^2+150x-350=0\Rightarrow\orbr{\begin{cases}x=2,5\\x=35\left(L\right)\end{cases}}\)
3, ta có: góc MFA = \(\frac{1}{2}\).(sđ cung AM + sđ cung BQ) (góc có đỉnh nằm trong đường tròn )
và góc MPQ = \(\frac{1}{2}\).sđ cung MQ = \(\frac{1}{2}\).. (sđ cung MB + sđ cung BQ ) (góc nội tiếp)
mà sđ cung AM = sđ cung MB (do M là điểm chính giữa cung AB )
=> góc MFA = góc MPQ
=> góc ngoài MFA tại hai đỉnh có hai góc đối nhau bằng nhau thì tứ giác EFQP là tứ giác nội tiếp hay E,F,P,Q cùng thuộc 1 đường tròn (đpcm)
c/ Ta có BF = FD
=> Tam giác BFD cân tại F
=> \(\widehat{FBD}=\widehat{FDB}=\frac{\widehat{AFB}}{2}=30\)
=> \(\widehat{BDC}=\widehat{ADC}-\widehat{BDF}=120-30=90\left(1\right)\)
Tam giác BME có
BM = BE
\(\widehat{MBE}=60\)
=> Tam giác MBE là tam giác đều
Tam giác MEC cân vì có ME = EC
=> \(\widehat{EMC}=\widehat{MCE}=\frac{\widehat{MEB}}{2}=30\)
=> \(\widehat{BMC}=\widehat{BME}+\widehat{EMC}=60+30=90\left(2\right)\)
Từ (1) và (2) => tứ giác BMCD nội tiếp đường tròn tâm E
Ta lại có \(\widehat{MBD}=\widehat{CBD}+\widehat{MBC}=30+60=90\)
=> DM là đường kính của đường tròn tâm E
=> M,E,D thẳng hàng
a/ Ta có
AF vừa bằng BE vừa // BE nên tứ giác ABEF là hình bình hành
Ta lại có \(AB=AF=\frac{AD}{2}\)
=> Tứ giác ABEF là hình thoi
=> AE vuông góc với BF
b/ Ta có
AB = DC (hai cạnh đối của hình bình hành) (1)
Xét \(\Delta ABF\)có
\(AB=AF=\frac{AD}{2}\)
\(\widehat{BAF}=60\)
\(\Rightarrow\Delta ABF\)đều
\(\Rightarrow AB=BF\)(2)
Từ (1) và (2) => BF = CD
Và FD // BC
=> Tứ giác BFDC là hình thang cân
c/ Đề thiếu dữ kiện không làm được câu c. Điểm M ở đâu
Sửa câu b/ Thành chứng minh tứ giác BFDC là hình thang can
Gọi \(O\) là giao điểm của trục của hình thang cân \(ABCD\) và đường trung trực của cạnh bên \(AD\). Sử dụng tính chất: Điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó chứng minh \(OA=OB=OC=OD\).
Gọi O=d∩d′O ta có:
\(d\) là trục của hình thang cân \(ABCD\)⇒ d là đường trung trực của AB và CD.
Mà \(O\) ∈ \(d\)⇒{\(OA=OB\)
\(OC=OD\) (1)
(điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).
Lại có \(O\) ∈ \(d'\)⇒\(OA=OD\) (2)
(điểm thuộc trung trực của một đoạn thẳng cách đều 2 đầu mút của đoạn thẳng đó).
Từ (1) và (2) ⇒ \(OA=OB=OC=OD\)
Vậy bốn điểm \(A,B,C,D\)cùng thuộc đường tròn tâm \(O\), bán kính \(R=OA=OB=OC=OD\).
Ta có: ABCD là hình thang cân
nên \(\widehat{A}=\widehat{B};\widehat{C}=\widehat{D}\)
hay \(\widehat{A}+\widehat{C}=180^0\)
Xét tứ giác ABCD có
\(\widehat{A}+\widehat{C}=180^0\)
Do đó: ABCD là tứ giác nội tiếp
hay A,B,C,D cùng thuộc 1 đường tròn