K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

\(x\left(y+z\right)-y\left(x-z\right)=xy+xz-yx+yz\)

\(=xy-xy+\left(zx+zy\right)\)

\(=\left(x+y\right)z\)

b, \(\left(m-n\right)\left(m+n\right)=m^2+mn-nm-n^2\)

\(=m^2-n^2\)

20 tháng 5 2017

a, \(a\left(b+c\right)-b\left(a-c\right)\)

\(=ab+ac-\left(ab-bc\right)\)

\(=ab+ac-ab+bc\)

\(=ac+bc\)

\(=\left(a+b\right)c\)

b,\(\left(a+b\right)\left(a-b\right)\)

\(=\left(aa+ab\right)-\left(ab+bb\right)\)

\(=aa+ab-ab-bb\)

\(=aa-bb\)

\(=a^2-b^2\)

17 tháng 2 2019

x(y+z) - y(x-z)=xy+xz-xy +yz=xz+yz=z(z+y)

(m-n)(m+n)=m^2 -mn + mn -n^2 = m^2 - n^2

17 tháng 2 2019

a)Ta có:

x(y+z)-y(x-z)=xy+xz-xy+zy=xy-xy+xz+zy=xz+zy=z(x+y)=(x+y)z

=>x(y+z)-y(x-z)=(x+y)z                                                                                                                 đpcm

b)Ta có:

(m-n)(m+n)=mm-mn+mn-nn=m2-n2

=>(m-n)(m+n)=m2-n2                                                                                                                   đpcm

AH
Akai Haruma
Giáo viên
13 tháng 2 2020

Lời giải:

Phản chứng. Giả sử $x+y+z+t$ là số nguyên tố. Vì $x,y,z,t$ nguyên dương nên $x+y+z+t\geq 4$. Do đó nó là snt lẻ.

$\Rightarrow x+z$ và $y+t$ phải khác tính chẵn lẻ.

Không mất tính tổng quát, giả sử $x+z$ chẵn và $y+t$ lẻ. Khi đó:

$x^2+z^2=(x+z)^2-2xz$ chẵn

$y^2+t^2=(y+t)^2-2yt$ lẻ

Do đó $x^2+z^2$ không thể bằng $y^2+t^2$ (trái với giả thiết)

Vậy $x+y+z+t$ là hợp số.

13 tháng 2 2020

hmm...

\(x^2+z^2=y^2+z^2\)

\(\Leftrightarrow x^2+y^2+z^2+t^2=2\left(y^2+z^2\right)\)

Do đó \(x^2+y^2+z^2+t^2⋮2\) (1)

Lại có: \(x^2-x⋮2;y^2-y⋮2;z^2-z⋮2;t^2-t⋮2\)

\(\Rightarrow x^2-x+y^2-y+z^2-z+t^2-t⋮2\)

Hay \(\left(x^2+y^2+z^2+t^2\right)-\left(x+y+z+t\right)⋮2\) (2)

Từ (1) và (2) suy ra \(x+y+z+t⋮2\)

\(x,y,z,t\) đều là các số dương nên \(x+y+z+t>2\) => \(x+y+z+t\) là hợp số.

18 tháng 1 2016

Nhiều quá bạn ơi bạn nên cho ít hơn 1 tí ik 

8 tháng 2 2019

Ta có : 50 + 49 + ... + ( x + 1 ) + x = (50 - x) . n  / 2 = 0

      (  50 - x ) . n = 0

Do n khác 0 nên 50 - x = 0

x = 50 - 0 = 50 

15 tháng 2 2019

a)biến đổi vế trái ta đc:x(y+z)-y(x-z)=xy+xz-xy+yz

                                                        =(xz+yz)+(xy-xy)

                                                        =z(x+y)=vế phải(đpcm)

b)biến đổi vế trái ta đc:x(y-z)-x(y+a)=xy-xz-xy-xa

                                                         =(xy-xy)-(xz+xa)

                                                         =-(xz+xa)

                                                         =-x(z+a)=vế phải(đpcm)  

15 tháng 2 2019

a;\(x\left(y+z\right)-y\left(x-z\right)=\left(x+y\right)z\)

\(xy+xz-xy+yz=\left(x+y\right)z\)

\(xz+yz=\left(x+y\right)z\)

\(\left(x+y\right)z=\left(x+y\right)z\left(ĐPCM\right)\)

b;\(x\left(y-z\right)-x\left(y+a\right)=-x\left(z+a\right)\)

\(xy-xz-xy-xa=-x\left(z+a\right)\)

\(-xz-xa=-x\left(z+a\right)\)

\(-x\left(z+a\right)=-x\left(z+a\right)\left(ĐPCM\right)\)

P/S: sai thì thôi nha 

M-N=x-y+z+2-x-3=z-y-1=1

=>z-y=2

=>M=x+z-y+2=x+2+2=x+4

=>M;N là 2 số nguyên liên tiếp

=>đpcm

10 tháng 2 2017

a) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)

BL:

Ta có: \(\left(x-y\right)-\left(x-z\right)\)

\(=x-y-x+z\)

\(=z+x-y-x\)

\(=\left(z+x\right)-\left(y+x\right)\)

\(\Rightarrow\) \(\left(x-y\right)-\left(x-z\right)=\left(z+x\right)-\left(y+x\right)\)

b) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)

BL:

Lại có: \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)\)

\(=x-y+z-y-z+x-x+y\)

\(=\left(x-y-x+y\right)+\left(z-y\right)-\left(z-x\right)\)

\(=\left(z-y\right)-\left(z-x\right)\)

\(\Rightarrow\) \(\left(x-y+z\right)-\left(y+z-x\right)-\left(x-y\right)=\left(z-y\right)-\left(z-x\right)\)

c) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\) BL: Ta lại có: \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\) \(=ab+ac-ba+bc\) \(=\left(ab-ba\right)+\left(ac+bc\right)\) \(=0+\left(a+b\right)c\) \(=\left(a+b\right)c\) \(\Rightarrow\) \(a\left(b+c\right)-b\left(a-c\right)=\left(a+b\right)c\) \(\rightarrow\) đpcm.