Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(m=-1\) thỏa mãn
Với \(m\ne-1\) hàm chỉ có cực tiểu mà không có cực đại khi:
\(\left\{{}\begin{matrix}m+1>0\\-m\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow-1< m\le0\)
Vậy \(-1\le m\le0\)
y’ = 3x2 – 2mx – 2 , ∆’ = m2 + 6 > 0 nên y’ = 0 có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.
Vậy hàm số luôn có một cực đại và một cực tiểu.
Hàm số có cực địa và cực tiểu <=> phương trình y'(x) = 0 có hai nghiệm phân biệt :
\(\Leftrightarrow3\left(m+2\right)x^2+6x+m=0\) có 2 nghiệm phân biệt
\(\Leftrightarrow\begin{cases}m+2\ne0\\\Delta'=-3m^2-6m+9>0\end{cases}\)\(\Leftrightarrow\begin{cases}m\ne-2\\m^2+2m-3< 0\end{cases}\) \(\Leftrightarrow-3< m\ne-2< 1\)
Giải:
a) Xét \(y'=3x^2+2mx\)
Ta thấy \(y'=3x^2+2mx=0\) có \(\Delta'=m^2>0\forall m\neq 0\) nên luôn có hai nghiệm phân biệt, đồng nghĩa với hàm số đã cho luôn có cực đại, cực tiểu với mọi \(m\neq 0\)
b) Đồ thị hàm số luôn cắt trục hoành tại điểm có hoành độ dương với mọi giá trị của $m$ nghĩa là phương trình \(x^3+mx^2-1=0\) luôn có nghiệm dương với mọi \(m\)
Xét hàm $y$ liên tục trên tập xác định.
Nếu \(m>0\) có \(\left\{\begin{matrix} f(0)=-1<0\\ f(m+1)=(m+1)^3+m(m+1)^2-1>0\end{matrix}\right.\Rightarrow f(0).f(m+1)<0\)
Do đó phương trình luôn có nghiệm thuộc khoảng \((0;m+1)\), tức là nghiệm dương.
Nếu \(m<0\) có \(\left\{\begin{matrix} f(0)=-1<0\\ f(1-m)=m^2-2m>0\forall m<0\end{matrix}\right.\Rightarrow f(0).f(1-m)<0\)
Do đó phương trình luôn có nghiệm thuộc khoảng \((0,1-m)\) , tức nghiệm dương
Từ hai TH ta có đpcm.
c) Để pt có $3$ nghiệm phân biệt thì \(y'=3x^2+2mx\) phải có hai nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(f(x_1)f(x_2)<0\)
Kết hợp với định lý Viete:
\(\Leftrightarrow x_1^3+x_2^3+m(x_1^2+x_2^2)-1>0\)
\(\Leftrightarrow 4m^3-27>0\Leftrightarrow m>\frac{3}{\sqrt[3]{4}}\)
Đề đúng là \(y=mx^2+2\left(m^2-5\right)x^4+4\) chứ bạn (nghĩa là ko bị nhầm lẫn vị trí \(x^2\) và \(x^4\))
Hàm có đúng 2 điểm cực đại và 1 điểm cực tiểu khi:
\(\left\{{}\begin{matrix}2\left(m^2-5\right)< 0\\2\left(m^2-5\right).m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \sqrt{5}\)
\(\Rightarrow\) có 2 giá trị nguyên của m thỏa mãn
Do \(f'\left(x\right)=x^2-2mx-1=0\)
Có \(\Delta'=m^2+1>0\) nên\(f'\left(x\right)=0\) có 2 nghiệm phân biệt \(x_1,x_2\) và hàm số đạt cực trị tại \(x_1,x_2\) với các điểm \(A\left(x_1,y_1\right);B\left(x_2,y_2\right)\)
Thực hiện phép chia \(f\left(x\right)\) cho \(f'\left(x\right)\) ta có :
\(f\left(x\right)=\frac{1}{3}\left(x-m\right)f'\left(x\right)-\frac{2}{3}\left(m^1+1\right)x+\left(\frac{2}{3}m+1\right)\)
Do \(f'\left(x_1\right)=f\left(x_2\right)=0\) nên
\(y_1=f\left(x_1\right)=-\frac{2}{3}\left(m^1+1\right)x_1+\left(\frac{2}{3}m+1\right)\)
\(y_2=f\left(x_2\right)=-\frac{2}{3}\left(m^2+1\right)x_2+\left(\frac{2}{3}m+1\right)\)
Ta có \(AB^2=\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2=\left(x_2-x_1\right)^2+\frac{4}{9}\left(m^2+1\right)^2\left(x_2-x_1\right)^2\)
\(=\left[\left(x_2-x_1\right)^2-4x_2x_1\right]\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\)
\(=\left(4m^2+4\right)\left[1+\frac{4}{9}\left(m^2+1\right)^2\right]\ge4\left(1+\frac{4}{9}\right)\)
\(\Rightarrow AB\ge\frac{2\sqrt{13}}{3}\)
Vậy Min \(AB=\frac{2\sqrt{13}}{3}\) xảy ra <=> m=0
Xét \(f'\left(x\right)=4x^3+3mx^2+2mx+m=0\Leftrightarrow m\left(3x^2+2x+1\right)=-4x^3\)
\(\Leftrightarrow\frac{-4x^3}{3x^2+2x+1}\)
Xét hàm số : \(g\left(x\right)=\frac{-4x^3}{3x^2+2x+1}\) có tập xác định : \(D_g=!\)
\(g'\left(x\right)=\frac{-4x^2\left(3x^2+2x+1\right)}{\left(3x^2+2x+1\right)^2}=\frac{-4x^2\left[2\left(x+1\right)^2+x^2+1\right]}{\left(3x^2+2x+1\right)^2}\le0\) với mọi \(x\in!\)
\(\lim\limits g\left(x\right)_{x\rightarrow\infty}=\lim\limits_{x\rightarrow\infty}\frac{-4x}{3+\frac{2}{x}+\frac{1}{x^2}}=\infty\)
Nghiệm của phương trình \(f'\left(x\right)=0\) cũng là giao điểm của đường thẳng y=m với đồ thị y = g(x)
Lập bảng biến thiên ta có đường thẳng y=m cắt y =g(x) tại đúng 1 điểm
\(\Rightarrow f'\left(x\right)=0\)
có đúng 1 nghiệm
Vậy hàm số y=f(x) không thể đồng thời có cực đại và cực tiểu