Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có: \(\widehat{xOz}+\widehat{zOy}=180^o\) (tính chất kề bù)
\(\Rightarrow\frac{1}{2}\widehat{xOz}+\frac{1}{2}\widehat{zOy}=\widehat{zOt}+\widehat{zOm}\)
\(\Rightarrow\frac{1}{2}\left(\widehat{xOz}+\widehat{zOy}\right)=\widehat{zOt}+\widehat{zOm}\)
\(\Rightarrow\frac{1}{2}180^o=\widehat{zOt}+\widehat{zOm}\)
\(\Rightarrow90^o=zOt+zOm\) (vuông góc nên đã chứng minh)
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau
Gọi AOC và COB là hai góc kề bù , OM và ON theo thứ tự là các tia phân giác của hai góc ấy . Ta có :
\(\widehat{MOC}+\widehat{CON}=\frac{\widehat{AOC}}{2}+\frac{\widehat{COB}}{2}=\frac{\widehat{AOC}+\widehat{COB}}{2}=\frac{180^0}{2}=90^0\)
Ta thấy tia OC nằm giữa hai tia OM và ON nên \(\widehat{MOC}+\widehat{CON}=\widehat{MON}\)
Do đó MON = 900 . Vậy \(OM\perp ON\)
* Gọi góc xOz, góc zOy là 2 góc kề bù ; và tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy.
* Để chứng minh 2 tia phân giác của 2 góc kề bù vuông góc với nhau, ta sẽ chứng minh tia Ou vuông góc tia Ov.
* Vì tia Ou, Ov lần lượt là tia phân giác của góc xOz, zOy
nên:
{ góc uOz = 1/2 góc xOz
{ góc zOv = 1/2 góc zOy
Suy ra:
{ 2 góc uOz = góc xOz
{ 2 góc zOv = góc zOy
Ta lại có:
góc xOz + góc zOy = 180 độ (vì 2 góc xOz, góc zOy kề bù)
=> 2 góc uOz + 2 góc zOv = 180 độ
=> 2(góc uOz + góc zOv) = 180 độ
=> góc uOz + góc zOv = 90 độ
=> góc uOv = 90 độ (vì 2 góc uOz, góc zOv kề nhau)
=> Tia Ou vuông góc Tia Ov
Do đó, 2 tia phân giác của 2 góc kề bù thì vuông góc với nhau.
góc tù thua góc nhọn ,góc nhọn thua góc vuông ,góc vuông thua góc bẹt, góc bẹt góc thua góc bè góc bè thua góc nhọn
Gọi xOy và yOz là hai góc kề bù.Ot là phân giác của xOy, Ot' là phân giác của yOz
Ta có:
yOt =1/2 xOy( ot phân giác) (1)
yOt'=1/2 yOx ( ot' phân giác) (2)
xOy+ yOz = 180o( kề bù)
Từ (1) và (2) => yOt+ yOt'=1/2(xOy+yOz)=1/2.180=90o
=>tOt' =90o hay Ot vuông góc với Ot'
=> ĐPCM