Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi rất dễ cho các bạn ăn điểm đấy!
Chứng minh rằng hai số tự nhiên liên tiếp nguyên tố cùng nhau
\(\text{Gọi số tự nhiên thứ 1 là n , thứ 2 là n + 1(}n\inℕ)\)
Đặt \(ƯC(n,n+1)=d\)
Ta có : \(\hept{\begin{cases}\text{n chia hết cho d(1)}\\\text{n + 1 chia hết cho d(}2)\end{cases}}\)
=> n + 1 - n chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> \(ƯC(n,n+1)=1\)
Vậy n và n + 1 là hai số tự nhiên liên tiếp nguyên tố cùng nhau
Ba số tự nhiên liên tiếp là số thú vị: 33 = 3.11; 34 = 2.17; 35 = 5.7
Gọi 4 số tự nhiên liên tiếp là : \(a_1\) < \(a_2\) < \(a_3\) < \(a_4\)
Xét \(a_1\le4\)=> Khong tồn tại 4 số tự nhiên a, b, c, d đồng thời là số thú vị
Xét \(a_1>4\)
Ta có: \(a_1\) ; \(a_2\) ; \(a_3\) ; \(a_4\) là 4 số tự nhiên liên tiếp
=>Tồn tại i để \(a_i⋮4\); \(i\in\left\{1;2;3;4\right\}\)
khi đó có số b >1 để: \(a_i=4.b\)không là số thú vị
Vậy không tồn tại 4 số tự nhiên liên tiếp bất kì đồng thời là số thú vị.
1)
Ta có : 326: n dư 11 => 326- 11= 315sẽ chia hết cho n (n >11)
553: n dư 13 => 553- 13= 540 sẽ chia hết cho n ( n> 13)
=> n \(\in\) ƯC (315; 540)
Ta có: 315= 32 x 5x 7
540= 22 x 33 x5
=> UCLN ( 315; 540) = 32 x5 =45
=> n thuộc Ư( 45)= { 1;3;5;9;15;45}
Mà n> 13=> n thuộc { 15; 45 }
Câu 2:
(1 )
\(S=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+...+\frac{10}{1400}\)
\(\Rightarrow S=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(\Rightarrow\frac{3.S}{5}=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{25.28}\)
\(\Rightarrow\frac{3.S}{5}=\frac{1}{4}-\frac{1}{28}=\frac{3}{14}\)
\(\Rightarrow S=\frac{5}{14}\)
Vậy S= \(\frac{5}{14}\)
VD: n=9(n>4), n+3=12 mà 12 và 9 không phải là 2 số nguyên tố cùng nhau, nên trong trường họp này điều cần chứng mình là sai. Tick mình nhé!
giả sử abc và ab+bc+ca không nguyên tố cùng nhau
=> tồn tại d là số nguyên tố và d là ước chung của abc và ab+bc+ca
abc chia hết cho d mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 TH:
TH1: a chia hết cho d => ab,ac chia hết cho d
mà ab+bc+ca chia hết cho d
=> bc chia hết cho d => b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH2: b chia hết cho d => ba,bc chia hết cho d
mà ab+bc+ca chia hết cho d
=> ac chia hết cho d => a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
TH3: c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
c chia hết cho d => ca,cb chia hết cho d
mà ab+bc+ca chia hết cho d
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau)
vậy: giả thiết đưa ra là sai
kết luận: abc và ab+bc+ca nguyên tố cùng nhau
Dễ thôi, giả sử 2 số đó là a, b. Chẳng hạn b = a + 1. gọi d là ước chung lớn nhất của a, b. do cách phân tích của b = a+1 và d là ước của b,a nên d phải là ước của 1, nên d trùng 1
=>xong^^
Lưu ý a = b + c, một số là ước của a và b thì phải là ước của c, hoặc a, b chia hết một số thì c cũng phải chia hết số đó