K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2016

Chứng minh cái này cho nó lẹ

a/b < (a+c)/(b+d) < c/d

Đấy số ở giữa đấy

16 tháng 8 2018

+)  Xét \(\hept{\begin{cases}x=\frac{a}{m}\\y=\frac{b}{m}\end{cases}}\)\(\left(a;b;m\in Z;m>0\right)\)

Ta có : \(x=\frac{a}{m}=\frac{2a}{2m}=\frac{a.a}{2m}< \frac{a+b}{2m}\)( vì a<b)

\(\Rightarrow x< z\)  (1)

+) Xét \(a< b\Rightarrow a+b< b+b\)

\(\Rightarrow a+b< b^2\)

\(\Rightarrow\frac{2b}{2m}>\frac{a+b}{2m}\)

\(\Rightarrow y>z\)(2)

Từ (1) và (2)  \(\Leftrightarrow x< y< z\)

Vậy .....

29 tháng 8 2016

Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.
Gọi \(a+b=c\) trong đó a,c là số hữu tỉ và b là số vô tỉ 
\(\Rightarrow b=c-a\) mà a và c là các số hữu tỉ\(\Rightarrow a-c\) là số hữu tỉ \(\Rightarrow b\) là số hữu tỉ(trái giả thiết). 
Vậy giả sử sai \(\Rightarrow\) tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.(đpcm)

29 tháng 8 2016

học lớp mấy v

3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 
3 tháng 12 2017

Ta có a3b+ab3+2a2b2+2a+2b+1=0

        <=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab

           <=>(a+b+1)2=-ab(a+b)2-(a+b)2

        <=>(a+b+1)2=(a+b)2(1-ab)

Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)

Nếu a+b khác 0:

 Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ 

=>1-ab là bình phương của một số hữu tỉ

=>đpcm

 Đúng 3  Sai 0 Sky Blue đã chọn câu trả lời này. 
18 tháng 4 2019

mk có thiếu một chút nhé : x^2 + y^2 + (xy+1/x+y)^2 = 2 nhé

29 tháng 7 2021

Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).

Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))

Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.

Vậy...