Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{2}{xy}:\left(\dfrac{y-x}{xy}\right)^2-\left(\dfrac{x^2+y^2}{\left(x-y\right)^2}\right)\)
\(=\dfrac{2}{xy}\cdot\dfrac{\left(xy\right)^2}{\left(x-y\right)^2}-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\dfrac{2xy-x^2-y^2}{\left(x-y\right)^2}=-1\)
2:
\(P=\dfrac{\left(5x+3\right)^2}{3x-2}\cdot\dfrac{\left(3x-2\right)\left(3x+2\right)}{5x+3}=\left(5x+3\right)\left(3x+2\right)\)
B=-x(x-y)-y(x+y)+(x+y)(x-y)+2y^(2)
B=-x^2+xy-yx-y^2+x^2-xy+xy-y^2+2y^2
B=0
vậu B ko phọ thuộc vào gt của biến
\(B=-x\left(x-y\right)-y\left(x+y\right)+\left(x+y\right)\left(x-y\right)+2y^2\)
\(=-x^2+xy-xy-y^2+x^2-y^2+2y^2\)
=0
\(a,-x^3+\left(x-3\right)\left[\left(2x+1\right)^2-2\left(\dfrac{3}{2}x^2+\dfrac{1}{2}x-4\right)\right]\\ =-x^3+\left(x-3\right)\left(4x^2+4x+1-3x^2-x+8\right)\\ =-x^3+\left(x-3\right)\left(x^2+3x+9\right)\\ =-x^3+\left(x^3-27\right)=-27\)
\(b,\left(x+2y\right)^3-\left(x-3y\right)\left(x^2+3xy+9y^2\right)-6y\left(x^2+2xy-\dfrac{35}{6}y^2\right)\\ =x^3+6x^2y+12xy^2+8y^3-x^3+27y^3-6x^2y-12xy^2+35y^3\\ =0\)
Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$
$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.
$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$
$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)
Trả lời :
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến M = ( x2y - 3 )2 - ( 2x-y)3 +xy2( 9-x3 ) + 8x3 - 6x2y - y3
Đè bài đó mọi người mk viết lại cho mn nhìn rõ
Hãy cùng giúp bạn ấy nào
a)\(\left(x+4\right)\left(x^2-4x+16\right)-x^3+5=x^3+64-x^3+5=69\)
Vậy biểu thức trên ko phụ thuộc vào biến x .
b)\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
Vậy biểu thức trên ko phụ thuộc vào biến x .