Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}\) (pp trục căn thức ở mẫu)
\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n^2+2n+1-n^2-n\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
Áp dụng tính: \(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+....+\frac{1}{400\sqrt{399}+399\sqrt{400}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{399}}-\frac{1}{\sqrt{400}}\)
\(=1-\frac{1}{\sqrt{400}}=1-\frac{1}{20}=\frac{19}{20}\)
Vậy S = 19/20
Mình đã chứng minh \(\frac{1}{2\sqrt{n+1}}< \sqrt{n+1}-\sqrt{n}\left(n\inℕ^∗\right)\) rồi nha!
Áp dụng vào, ta được: \(\frac{1}{2\sqrt{1}}< \sqrt{1}\)
\(\frac{1}{2\sqrt{2}}< \sqrt{2}-\sqrt{1}\)
\(\frac{1}{2\sqrt{3}}< \sqrt{3}-\sqrt{2}\)
.............................
\(\frac{1}{2\sqrt{2500}}< \sqrt{2500}-\sqrt{2499}\)
\(\Rightarrow1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2500}}\)
\(< 2\left(\sqrt{1}+\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{2500}-\sqrt{2499}\right)\)
\(=2.50=100\)
=> ĐPCM
P/s: sai sót xin bỏ qua cho.
Đặt:
\(A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}\)
\(\Leftrightarrow2A=\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\frac{1}{\sqrt{5}+\sqrt{7}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{97}+\sqrt{99}}\)
\(>\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+...+\frac{1}{\sqrt{97}+\sqrt{99}}+\frac{1}{\sqrt{99}+\sqrt{101}}\)
\(=\frac{1}{2}.\left(\sqrt{3}-\sqrt{1}+\sqrt{5}-\sqrt{3}+...+\sqrt{101}-\sqrt{99}\right)\)
\(=\frac{1}{2}.\left(\sqrt{101}-\sqrt{1}\right)>\frac{1}{2}.\left(\sqrt{100}-\sqrt{1}\right)\)
\(=\frac{9}{2}\)
\(\Rightarrow A>\frac{9}{4}\)
Câu 2/ Ta có:
\(n^{n+1}>\left(n+1\right)^n\)
\(\Leftrightarrow n>\left(1+\frac{1}{n}\right)^n\left(1\right)\)
Giờ ta chứng minh cái (1) đúng với mọi \(n\ge3\)
Với \(n=3\) thì dễ thấy (1) đúng.
Giả sử (1) đúng đến \(n=k\) hay
\(k>\left(1+\frac{1}{k}\right)^k\)
Ta cần chứng minh (1) đúng với \(n=k+1\)hay \(k+1>\left(1+\frac{1}{k+1}\right)^{k+1}\)
Ta có: \(\left(1+\frac{1}{k+1}\right)^{k+1}< \left(1+\frac{1}{k}\right)^{k+1}=\left(1+\frac{1}{k}\right)^k.\left(1+\frac{1}{k}\right)\)
\(< k\left(1+\frac{1}{k}\right)=k+1\)
Vậy có ĐPCM
Lời giải:
Liên hợp ta thấy:
\(2(\sqrt{n+1}-\sqrt{n})=2.\frac{(n+1)-n}{\sqrt{n+1}+\sqrt{n}}=\frac{2}{\sqrt{n+1}+\sqrt{n}}<\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(1)\)
\(2(\sqrt{n}-\sqrt{n-1})=2.\frac{n-(n-1)}{\sqrt{n}+\sqrt{n-1}}=\frac{2}{\sqrt{n}+\sqrt{n-1}}>\frac{2}{\sqrt{n}+\sqrt{n}}=\frac{1}{\sqrt{n}}(2)\)
Từ \((1);(2)\Rightarrow 2(\sqrt{n+1}-\sqrt{n})< \frac{1}{\sqrt{n}}< 2(\sqrt{n}-\sqrt{n-1})\)
------------------------
Áp dụng vào bài toán:
\(S=1+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{100}}>1+2(\sqrt{3}-\sqrt{2})+2(\sqrt{4}-\sqrt{3})+...+2(\sqrt{101}-\sqrt{100})\)
\(\Leftrightarrow S>1+2(\sqrt{101}-\sqrt{2})>18(*)\)
Và:
\(S< 1+2(\sqrt{2}-\sqrt{1})+2(\sqrt{3}-\sqrt{2})+....+2(\sqrt{100}-\sqrt{99})\)
\(\Leftrightarrow S< 1+2(\sqrt{100}-\sqrt{1})=19(**)\)
Từ $(*); (**)$ suy ra $18< S< 19$ (đpcm)
Xét số hạng tổng quát ta có:
\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
Áp dụng vào bài tập, ta có:
\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)
\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)
Lời giải:
Sửa đề: CMR:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\sqrt{n}-1\)
-------------------------------
Sử dụng PP liên hợp ta có:
\(\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+...+\frac{1}{\sqrt{n-1}+\sqrt{n}}=\frac{\sqrt{2}-\sqrt{1}}{(\sqrt{1}+\sqrt{2})(\sqrt{2}-\sqrt{1})}+\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{2}+\sqrt{3})(\sqrt{3}-\sqrt{2})}+\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{3}+\sqrt{4})(\sqrt{4}-\sqrt{3})}+....+\frac{\sqrt{n}-\sqrt{n-1}}{(\sqrt{n-1}+\sqrt{n})(\sqrt{n}-\sqrt{n-1})}\)
\(=\frac{\sqrt{2}-\sqrt{1}}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+....+\frac{\sqrt{n}-\sqrt{n-1}}{n-(n-1)}\)
\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n}-\sqrt{n-1}\)
\(=\sqrt{n}-\sqrt{1}=\sqrt{n}-1\)
Ta có đpcm.
\(\frac{1}{2\sqrt{n+1}}=\frac{1}{\sqrt{n+1}+\sqrt{n+1}}< \frac{1}{\sqrt{n+1}+\sqrt{n}}=\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}=\sqrt{n+1}-\sqrt{n}\)
Vậy ....