K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
18 tháng 7 2022

\(\dfrac{3}{1^2x2^2}+\dfrac{5}{2^2x3^2}+\dfrac{7}{3^2x4^2}+...+\dfrac{19}{9^2x10^2}\\ =\dfrac{2^2}{1^2x2^2}-\dfrac{1^2}{1^2x2^2}+\dfrac{3^2}{2^2x3^2}-\dfrac{2^2}{2^2x3^2}+\dfrac{4^2}{3^2x4^2}-\dfrac{3^2}{3^2x4^2}+...+\dfrac{10^2}{9^2x10^2}-\dfrac{9^2}{9^2x10^2}\\ =\dfrac{1}{1^2}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+\dfrac{1}{3^2}-\dfrac{1}{4^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\\ =1-\dfrac{1}{10^2}< 1\\ =>DPCM\)

18 tháng 7 2022

helppppp

23 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

d: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{4}}=\dfrac{x+3y-2z}{\dfrac{1}{2}+3\cdot\dfrac{1}{3}-2\cdot\dfrac{1}{4}}=\dfrac{36}{1}=36\)

Do đó: x=18; y=12; z=9

22 tháng 10 2021

a) Thay x + 3y - 2z vào biểu thức ta có:

 \(\dfrac{x - 1}{3} = \dfrac{3(y + 2)}{3 . 4} = \dfrac{2(z - 2)}{2 . 3}\) = \(​​​​\dfrac{x - 1}{3} = \dfrac{3x + 6}{12} = \dfrac{2z - 4}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhua ta có:

\(​​​​\dfrac{x - 1}{3} = \dfrac{3y + 6}{12} = \dfrac{2z - 4}{6} = ​​​​\dfrac{x - 1}{3}+ \dfrac{3y + 6}{12} -\dfrac{2z - 4}{6}\) 

=\(​​​​\dfrac{x - 1 + 3y + 6 - 2z + 4}{3 + 12 -6} \) = \(​​​​\dfrac{(x + 3y - 2z) + ( -1 + 6 +4)}{3 + 12 - 6} \)

=\(​​​​\dfrac{36 + 9}{9}\) = 5

=> \(​​​​\dfrac{x - 1}{3} =\) 5 => x - 1 = 5.3 =15 => x = 5+1 = 6

=>

=>

Vậy ...

(Bạn dựa theo cách này và lm những bài tiếp nhé!)

 

 

 

 

 

13 tháng 3 2022

 

a) \(A=2x^2-\dfrac{1}{3}y\)

A= \(\left(2-\dfrac{1}{3}\right)\)\(x^2y\)

A=\(\dfrac{5}{3}\)\(x^2y\)

Tại \(x=2;y=9\) ta có

A=\(\dfrac{5}{3}\).(2)\(^2\).9 = \(\dfrac{5}{3}\).4 .9 = 60

Vậy tại \(x=2;y=9\) biểu thức A= 60

b) P=\(2x^2+3xy+y^2\)            (\(y^2\) là 1\(y^2\) nha bạn)

P=\(\left(2+3+1\right)\left(x^2.x\right)\left(y.y^2\right)\)

P= 6\(x^3y^3\)

Tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) ta có

P= 6.\(\left(-\dfrac{1}{2}\right)^3.\left(\dfrac{2}{3}\right)^3\) = 6.\(\left(-\dfrac{1}{8}\right).\dfrac{8}{27}\) = \(-\dfrac{2}{9}\)

Vậy tại \(x=-\dfrac{1}{2};y=\dfrac{2}{3}\) biểu thức P= \(-\dfrac{2}{9}\)

c)\(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)

=\(\left((-\dfrac{1}{2}).\dfrac{2}{3}\right)\left(x.x^3\right).y^2\)

=\(-\dfrac{1}{3}\)\(x^4y^2\)

Tại \(x=2;y=\dfrac{1}{4}\)ta có

\(-\dfrac{1}{3}\).\(\left(2\right)^4.\left(\dfrac{1}{4}\right)^2=-\dfrac{1}{3}.16.\dfrac{1}{16}=-\dfrac{1}{3}\)

\(\)Vậy \(x=2;y=\dfrac{1}{4}\) biểu thức \(\left(-\dfrac{1}{2}xy^2\right).\left(\dfrac{2}{3}x^3\right)\)\(-\dfrac{1}{3}\)

CHÚC BẠN HỌC TỐT NHA

 

 

4 tháng 10 2021

a. x=5/6

 

4 tháng 10 2021

\(a,\Rightarrow\left(x-\dfrac{1}{2}\right)^3=\dfrac{1}{27}=\left(\dfrac{1}{3}\right)^3\\ \Rightarrow x-\dfrac{1}{2}=\dfrac{1}{3}\Rightarrow x=\dfrac{5}{6}\\ b,\Rightarrow\left(\dfrac{3}{2}\right)^{2x-1}:\left(\dfrac{3}{2}\right)^9=\left(\dfrac{3}{2}\right)^4\\ \Rightarrow2x-1-9=4\\ \Rightarrow2x=14\Rightarrow x=7\\ c,\Rightarrow2^{x-1}+2^{x+2}=9\cdot2^5\\ \Rightarrow2^{x-1}\left(1+2^3\right)=9\cdot2^5\\ \Rightarrow2^{x-1}\cdot9=9\cdot2^5\\ \Rightarrow2^{x-1}=2^5\Rightarrow x-1=5\Rightarrow x=6\\ d,\Rightarrow\left(2x+1\right)^2=12+69=81\\ \Rightarrow\left[{}\begin{matrix}2x+1=9\\2x+1=-9\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)

26 tháng 9 2017

\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|=4x\)

\(\left\{{}\begin{matrix}\left|x+\dfrac{1}{2}\right|\ge0\\\left|x+\dfrac{1}{3}\right|\ge0\\\left|x+\dfrac{1}{4}\right|\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\ge0\)

\(\Leftrightarrow4x\ge0\)

\(\Leftrightarrow x+\dfrac{1}{2}+x+\dfrac{1}{3}+x+\dfrac{1}{4}=4x\)

\(\Leftrightarrow3x+1=4x\)

\(\Leftrightarrow x=1\left(tm\right)\)

Vậy ..

11 tháng 11 2021

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

6 tháng 8 2018

\(\dfrac{3x-2y}{4}=\dfrac{2z-4x}{3}=\dfrac{4y-3z}{2}\)

\(\Leftrightarrow\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}\)

Theo tính chất của dãy tỉ số bằng nhau, có:

\(\dfrac{12x-8y}{16}=\dfrac{6z-12x}{9}=\dfrac{8y-6z}{4}=\dfrac{12x-8x+6z-12x+8y-6z}{16+9+4}=\dfrac{0}{29}=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}12x=8y\\6z=12x\\8y=6z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{12}\\\dfrac{x}{6}=\dfrac{z}{12}\\\dfrac{y}{6}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{3}\\\dfrac{x}{2}=\dfrac{z}{4}\\\dfrac{y}{3}=\dfrac{z}{4}\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\left(đpcm\right)\)

Kết luận ...

20 tháng 7 2017

3a)Vì A là số nguyên

=>\(3n+9⋮n-4=>3n-12+21⋮n-4=>3.\left(n-4\right)+21⋮n-4\)

\(\text{3 . (n - 4)}⋮n-4\)

=>\(21⋮n-4=>n-4\inƯ\left(21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)

(Vì n là số nguyên => n - 4 là 1 số nguyên)

=>\(n\in\left\{-17;-3;1;3;5;9;11;25\right\}\)

Ta có bảng sau:

n -17 -3 1 3 5 9 11 25
3n + 9 -42 0 12 18 24 36 42 84
n - 4 -21 -7 -3 -1 1 3 7 21
\(A=\dfrac{3n+9}{n-4}\) 2 0 -4 -18 24 12 6 4

Vậy.....

b)Vì B là số nguyên

=>\(2n-1⋮n+5=>2n+10-11⋮n+5=>2\left(n+5\right)-11⋮n+5\)

\(\text{2 ( n + 5)}⋮n+5\)

=>\(11⋮n+5=>n+5\in\left\{-11;-1;1;11\right\}\)

(Vì n là số nguyên=> n + 5 là số nguyên)

=> \(n\in\left\{-16;-6;-4;6\right\}\)

Ta có bảng sau:

n -16 -6 -4 6
2 n - 1 -33 -13 -9 11
n + 5 -11 -1 1 11
\(B=\dfrac{2n-1}{n+5}\) 3 13 -9

1

Vậy.......

20 tháng 7 2017

Bài 6 cậu chép đúng đề bài chứ??

26 tháng 9 2017

\(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| - \(\dfrac{1}{5}\)= \(\dfrac{1}{6}\)

=> \(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\) - \(\dfrac{1}{4}\)| = \(\dfrac{11}{30}\)

=> | \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| = \(\dfrac{11}{15}\)

=> \(\left[{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{11}{15}\\\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{-11}{15}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}\dfrac{1}{3}x=\dfrac{59}{60}\\\dfrac{1}{3}x=\dfrac{-29}{60}\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\dfrac{59}{20}\\x=\dfrac{-29}{20}\end{matrix}\right.\)

Chúc bạn học tốt !

26 tháng 9 2017

Tích mình , mình làm nhé! hihahehe