Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{99.100}$
$A< \frac{1}{4}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}$
$A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}$
$A< \frac{1}{4}+\frac{1}{2}-\frac{1}{100}< \frac{1}{4}+\frac{1}{2}$
Hay $A< \frac{3}{4}$
1/4^2 + 1/5^2 +... + 1/100^2 < 1/3.4 + 1/4.5 +...+ 1/99.100
A=1/3 - 1/4 + 1/4 - 1/5 +...+ 1/99 - 1/100
=1/3 - 1/100 < 1/3
a) Gọi ƯCLN(12n+1,30n+2) là d
12n+1⋮d ⇒ 60n+5⋮d
30n+2⋮d ⇒ 60n+4⋮d
(60n+5)-(60n+4)⋮d
1⋮d
Vậy \(\dfrac{12n+1}{30n+2}\) là ps tối giản
b) Đặt A=\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{100^2}\)
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};...;\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\)
\(A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}\)
\(A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)
\(S=\dfrac{1}{2^2}\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)
=>\(S< =\dfrac{1}{4}\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\right)\)
=>\(S< =\dfrac{1}{4}\cdot\left(1-\dfrac{1}{n}\right)=\dfrac{1}{4}\cdot\dfrac{n-1}{n}< =\dfrac{1}{4}\)
Ta có: \(\dfrac{1}{2^2}< \dfrac{1}{1.2}...\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Rightarrow A< \dfrac{1}{1.2}+...+\dfrac{1}{99.100}\)
\(\Rightarrow A< 1-\dfrac{1}{2}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Rightarrow A< 1-\dfrac{1}{100}\)
\(\Rightarrow A< \dfrac{99}{100}\) Vì \(\dfrac{99}{100}< 1\Rightarrow A< 1\)
bạn ơi cái câu <1 số hạng cuối cùng là j thế?
1/2^2+1/3^2+...+1/50^2<1/1*2+1/2*3*+...+1/49*50
=1/1-1/2+1/2-1/3+...+1/49-1/50<1
=>S<1+1=2
\(Vì\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};.....;\dfrac{1}{n^2}< \dfrac{1}{(n-1).n}\)
\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{\left(n-1\right).1}< 1\)\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{n^2}< 1\left(đpcm\right)\)
vậy \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{n^2}< 1\)
ĐặtA= \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+....+\dfrac{1}{n^2}\)
Do \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
.............
\(\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right)n}\)
Cộng vế với vế ta suy ra : A<\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{\left(n-1\right)n}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-....-\dfrac{1}{\left(n-1\right)}+\dfrac{1}{n-1}-\dfrac{1}{n}\)
=\(1-\dfrac{1}{n}\)
Mà 1-\(\dfrac{1}{n}\)<1
=> A<1 (đpcm)