Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: - x2 - 1 = 0
-x2 = 1
-1 = x2
x2 = -1
vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm
K CHO MIK NHA
Bài 2:
a: Sửa đề: \(x^2+2x+3\)
Đặt \(x^2+2x+3=0\)
\(\Delta=2^2-4\cdot1\cdot3=4-12=-8< 0\)
Do đó: Phương trình vô nghiệm
b: Đặt \(x^2+4x+6=0\)
\(\Leftrightarrow x^2+4x+4+2=0\)
\(\Leftrightarrow\left(x+2\right)^2+2=0\)(vô lý)
vì x^2 >hoặc= 0 (với mọi giá trị của x)
Suy ra x^2-3x+12 > 0 (với mọi x)
Suy ra x^2-3x+12 khác o
Suy ra x^2-3x+12 vô nghiệm
Tham khảo:x^2-5x+20
ta có: x^2-5x+20=x^2-2/5x-2/5x+25/4-25/4+20
=(x^2-2/5x)-(2/5x-25/4)-25/4+80/4
=x(x-2/5)-2/5(x-2/5)+55/4
=(x-2/5)(x-2/5)+55/4
=(x-2/5)^2+55/4
Ta có: (x-2/5)^2>=0 Với x thuộc R
(x-2/5)^2+55/4>=55/4>0
=>Đa thức không có nghiệm
\(x^4+x^3+x^2+1\)
\(\Leftrightarrow x^4+x^3+\frac{x^2}{4}+\frac{3x^2}{4}+x+\frac{1}{3}+\frac{2}{3}=0\)
\(\Leftrightarrow x^2\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}\)
Ta thấy:\(x^2\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}x}{2}+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}>0\)với mọi x
=>vô nghiệm
\(x^4+x^3+x^2+x+1=x^4+\left(x^3+x^2\right)+\left(x+1\right)\)
\(=x^4+x\left(x+1\right)+\left(x+1\right)\)
\(=x^4+\left(x+1\right)^2\)
\(x^4\ge0\)
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow x^4+\left(x+1\right)^2\ge0\)
Giả sử đa thức \(x^4+x^3+x^2+x+1=0\)(có nghiệm )
\(\Rightarrow\hept{\begin{cases}x^4=0\\\left(x+1\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}\)(vô lý vì x không thể nhận 2 giá trị cùng 1 lúc)
Do đó \(x^4+x^3+x^2+x+1\) không nghiệm.
$x^4-6x^2+15\\=x^4-3x^2-3x^2+9+6\\=x^2(x^2-3)-3(x^2-3)+6\\=(x^2-3)(x^2-3)+6\\=(x^2-3)^2+6\\(x^2-3)^2 \geq 0\\\to (x^2-3)^2+6 \geq 6>0\\\to x^4-6x^2+9$ vô nghiệm
4:
a: f(x)=0
=>-x-4=0
=>x=-4
b: g(x)=0
=>x^2+x+4=0
Δ=1^2-4*1*4=1-16=-15<0
=>g(x) ko có nghiệm
c: m(x)=0
=>2x-2=0
=>x=1
d: n(x)=0
=>7x+2=0
=>x=-2/7