K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

Bạn xem lại đề nhé, phải là chứng minh rằng có thể tìm được một số tự nhiên dạng 20152015...2015 chia hết cho 41

Chọn 41 số dạng 20152015...2015 khác nhau.

Nếu có 1 số trong nhóm chia hết cho 41. => đpcm

Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.

Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.

Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.

Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.

17 tháng 6 2016

Chọn 41 số dạng 20152015...2015 khác nhau.

Nếu có 1 số trong nhóm chia hết cho 41. => đpcm

Nếu ko có số nào chia hết cho 41 thì theo nguyên lý Directle thì có ít nhất một cặp số (A;B) có cùng số dư khi chia cho 41.

Khi đó hiệu A - B = 20152015...201500...000 = 20152015...2015 (tạm gọi =C) x 1000...000 sẽ chia hết cho 41.

Mà 1000...000 không chia hết chết cho 41 nên C = 20152015...2015 sẽ chia hết cho 41. Nên C là số cần tìm.

Vậy, luôn tìm được ít nhất 1 số tự nhiên dạng 20152015...2015 chia hết cho 41.

29 tháng 7 2021

tui mới học lớp 6 thui mà, nguyên lý Directle là gì sao tui bt dc

21 tháng 3 2016

lấy 42 số 2015 ta có 20152015...2015(có 42 số)

chia cho 41 ta được 42 số dư ,mỗi số dư nhận được 1 trong 41 số :0;1;2;3;...;40

Do đó phải có ít nhất hai số có cùng số dư khi chia cho 41.khi đó hiệu của chúng chia hết cho 41

Giả sử : 20152015...2015(m số 2015) - 20152015...2015(m số 2015)=20152015...2015(m - n số 2015).104nchia hết cho 41(m>n)

vì 104n và 41 là hai số nguyên tố cùng nhau

=>20152015...2015 chia hết cho 41

vậy tồn tại 1 số có dạng 20152015...2015 chia hết cho 41

14 tháng 2 2017

20 hay sao ay ban a

kb voi mk nha nha nha 

tk mk nha nha nha

mk se k va kb lai

23 tháng 2 2020

Xét 2015 số: 

\(a_1=2\)

\(a_2=22\)

...

\(a_{2015}=222...2\)(2015 chữ số 2)

Nếu như có một trong 2015 số này chia hết cho 2015 thì bài toán được cm (do số đó chỉ gồm các chữ số 2

Nếu như không có số nào chia hết cho 2015, thì thì theo nguyên lí Dirichlet ít nhất 2 trong 2015 số này có cùng số dư khi chia 2015 (do chỉ có tối đa 2015 số dư từ 1 đến 2014). Hai số này chia hết cho 2015 do cùng số dư

Giả sử hai số đó là \(a_i\)và \(a_j\)(i<j)

\(\Rightarrow a_j-a_i=222...200...0\)(có i chữ số 0 và j-i chữ số 2) chia hết cho 2015

\(\Rightarrow\)đpcm