Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa đề câu 1 :
\(\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+...+\frac{99}{100!}\)
\(=\frac{2-1}{2!}+\frac{3-1}{3!}+\frac{4-1}{4!}+...+\frac{100-1}{100!}\)
\(=\frac{1}{1!}-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+\frac{1}{3!}-\frac{1}{4!}+...+\frac{1}{99!}-\frac{1}{100!}\)
\(=1-\frac{1}{100!}< 1\)
sửa đề câu 2
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=\left(\frac{1.2}{2!}+\frac{2.3}{3!}+\frac{3.4}{4!}+...+\frac{99.100}{100!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=\left(1+1+\frac{1}{2!}+...+\frac{1}{98!}\right)-\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{100!}\right)\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
Bài 1:
Ta có:
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}\)
\(=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+...+\frac{1}{81}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Mà \(\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
#)Giải :
Bài 1 :
\(C=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\Leftrightarrow3C=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\)
\(\Leftrightarrow3C-C=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(\Leftrightarrow2C=1-\frac{1}{3^{100}}\Leftrightarrow C=\frac{1-\frac{1}{3^{100}}}{2}< \frac{1}{2}\Rightarrow C< \frac{1}{2}\left(đpcm\right)\)
Bài 2 :
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}=\frac{3}{1.4}+\frac{5}{4.9}+\frac{7}{9.16}+...+\frac{19}{81.100}\)
\(=\left(1-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{9}\right)+\left(\frac{1}{9}-\frac{1}{16}\right)+...+\left(\frac{1}{81}-\frac{1}{100}\right)=1-\frac{1}{100}=\frac{99}{100}< 1\)
\(\Rightarrow\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{19}{9^2.10^2}< 1\left(đpcm\right)\)
\(M=\frac{1}{3^2}+\frac{2}{3^3}+\frac{3}{3^4}+...+\frac{10}{3^{11}}\)
\(\Rightarrow3M=\frac{1}{3}+\frac{2}{3^2}+...+\frac{10}{3^{10}}\)
\(\Rightarrow3M-M=\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{10}{3^{10}}\right)-\left(\frac{1}{3^2}+\frac{2}{3^3}+...+\frac{10}{3^{11}}\right)\)
\(\Rightarrow2M=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}-\frac{10}{3^{11}}\)
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}\)
\(\Rightarrow3A=1+\frac{1}{3}+...+\frac{1}{3^9}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^9}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{10}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{10}}< 1\)
\(\Rightarrow2A< 1\)
\(\Rightarrow A< \frac{1}{2}\)
\(\Rightarrow2M< \frac{1}{2}-\frac{10}{3^{11}}\)
\(\Rightarrow M< \frac{\frac{1}{2}-\frac{10}{3^{11}}}{2}\)
\(\Rightarrow M< \frac{1}{4}-\frac{1}{2.3^{11}}< \frac{1}{4}\)
\(\Rightarrow M< \frac{1}{4}\left(đpcm\right)\)
Không có điều kiện gì à?Nếu n = 1 \(C>1>\frac{1}{4}\) vậy c/m làm gì?
Chắc là n>=3 đó