Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(=\left(x-y\right)^2+\left(x-y\right)+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x-y+\frac{1}{2}\right)^2+\frac{3}{4}>0\rightarrowđpcm\)
b) \(2x^2+9y^2+3z^2+6xy+2xz+6yz\)
\(=\left(x^2+z^2+2xz\right)+6y\left(x+z\right)+9y^2+x^2+2z^2\)
\(=\left(x+z\right)^2+6y\left(x+z\right)+9y^2+x^2+2z^2\)
\(=\left(x+z+3y\right)^2+x^2+2z^2\ge0\rightarrowđpcm\)
a) 9x2+6xy+y2
= (3x)2+2.3x.y+y2
=(3x+y)2
b) x2 + 4xy + y2
=x2 + 2xy + y2 + 2xy
= (x+y)2+2xy
\(a.9x^2+6xy+y^2\\ =\left(3x+y\right)^2\\ b.x^2+4xy+y^2\\ =\left(x+y\right)^2+2xy\)
\(a.6x^3y^2.\left(2-x\right)+9x^2y^2.\left(x-2\right)\\ =6x^3y^2.\left(2-x\right)-9x^2y^2.\left(2-x\right)\\ =3x^2y^2\left(2-x\right)\left(2x-3\right)\)
Lời giải:
a.
$=6x^3y^2(2-x)-9x^2y^2(2-x)$
$=(2-x)(6x^3y^2-9x^2y^2)$
$=(2-x).3x^2y^2(2x-3)=3x^2y^2(2-x)(2x-3)$
b.
$=(x^2-y^2)-(4x-4y)=(x-y)(x+y)-4(x-y)$
$=(x-y)(x+y-4)$
c.
$81x^2-(9y^2-6yz+z^2)$
$=(9x)^2-(3y-z)^2=(9x-3y+z)(9x+3y-z)$
\(2x^2+9y^2+3z^2+6xy-2xz+6yz\)
\(=\left(2x^2-6xy-2xz+\frac{9}{2}y^2+3yz+\frac{z^2}{2}\right)+\left(\frac{9}{2}y^2+3yz+\frac{z^2}{2}\right)+2z^2\)
\(=\left[2x^2-2x\left(3y+z\right)+\frac{9y^2+6yz+z^2}{2}\right]+\frac{9y^2+6yz+z^2}{2}+2z^2\)
\(=\left[2x^2-2.2.x.\frac{3y+z}{2}+\frac{\left(3y+z\right)^2}{2}\right]+\frac{\left(3y+z\right)^2}{2}+2z^2\)
\(=2\left[x^2-2.x.\frac{3y+z}{2}+\frac{\left(3y+z\right)^2}{4}\right]+\frac{\left(3y+z\right)^2}{2}+2z^2\)
\(=2\left(x^2-\frac{3y+z}{2}\right)^2+\frac{\left(3y+z\right)^2}{2}+2z^2\ge0\forall x;y;z\)
Ta có đpcm
dòng cuối bị nhầm nhé sửa x2 thành x như vậy: \(2\left(x-\frac{3y+z}{2}\right)^2\)