K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

a) A=3+32+33+34+35+36+....+328+329+330

⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔A=3.13+34.13+....+328.13

⇔A=13(3+34+....+328)⋮13(dpcm)

b) A=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔A=3.364+....+325.364

⇔A=364(3+35+310+....+325)

 

 

15 tháng 10 2018

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề

12 tháng 1 2016

Giả sử 3n+4 là SCP => 3n+4=a2

Mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ+số chẵn=số lẻ nên a2 là số lẻ

=> a là số lẻ

=> a có dạng 4k+1 hoặc 4k+3

+) Nếu a=4k+1 thì a2=(4k+1)2=(4k+1)(4k+1)=16k2+8k+1=8m+1

+) Nếu a=4k+3 thì a2=(4k+3)2=(4k+3)(4k+3)=16k2+24k+9=8m+1

Vậy a2=8m+1          (1)

Mặt khác, nếu n chẵn thì 3n+4=32k+4=9k+4=(8+1)k.3+4=8h+1+4=8h+5    (trái với 1)

nếu n lẻ thì n=2k+1=>3n+4=32k+1+4=9k.3+4=(8+1)k.3+4=(8k+1).3+4=8h+1      (trái với 1)

  Vậy 3n+4 không thể là SCP

tick nha!

DD
26 tháng 11 2021

Gọi ba tự nhiên lẻ bất kì lần lượt là \(2m+1,2n+1,2p+1\).

Ta có: \(\left(2m+1\right)^2+\left(2n+1\right)^2+\left(2p+1\right)^2\)

\(=4m^2+4m+1+4n^2+4n+1+4p^2+4p+1\)

\(\equiv3\left(mod4\right)\)

mà số chính phương khi chia cho \(4\)chỉ có thể dư \(0\)hoặc \(1\).

Do đó ta có đpcm. 

26 tháng 9 2021

127^2; 999^2; 33^4;17^10;52^51

a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9

Ta có :

02 = 0 

12 = 1

22 = 4

32 = 9

42 = 16

52 = 25

62 = 36

72 = 49

82 = 64

92 = 81

Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8

b) Vì 1262 có chữ số tận cùng là 6

=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )

Ta có 10012 có chữ số tận cùng là 1

=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )

Ta có 112 và 113 đều có chữ số tận cùng là 1 

=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )

Ta có 1010 có chữ số tận cùng là 0

=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )

Ta có 5151 có chữ số tận cùng là 1

=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )

27 tháng 7 2016

Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư 1 đúng không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 

Vậy số chính phương khi chia cho 3 không thể dư 2 mà chỉ có thể dư 1 hoặc 0

27 tháng 7 2016

(2k+1) 2k (2k-1) 
(2k+1)^2 +4k^2 +(2k-1)^2=4k^2 +4k +1 +4k^2 +4k^2 -4k +1=12k^2+2 chia hết cho 2 không chia hết cho 4 nên không là số chính phương

Mình ko chắc đã đúng đâu