Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dây là 4 số nguyên dương liên tiếp, còn phần kia tương tự nha
Đặt A = n.(n+1)(n+2)(n+3) với n ≥ 1; n € N
A = [n.(n+3)].[(n+1)(n+2)] = (n² + 3n).(n²+3n+2)
= t(t+2) (với t = n² + 3n ≥ 4 ; t € N)
Ta thấy
t² < A = t² + 2t < t² + 2t + 1 = (t+1)²
=> A nằm giữa 2 số chính phương liên tiếp
=> A không phải là số chính phương (đpcm)
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6
a, 3n + 2 - 2n + 2 + 3n - 2n
= 3n(32 + 1) - 2n(22 + 1)
= 10.3n - 5.2n
= 10.3n - 10.2n - 1
= 10(3n - 2n - 1) chia hết cho 10
b, S = abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 11c
= 111(a + b + c)
= 3.37(a+b+c)
giả sử S là số chính phương thì S phải chứa thừa số nguyên tố 37 với số mũ chẵn trở lên
=> 3(a + b + c) chia hết cho 37
=> a + b + c chia hết cho 37
vì a;b;c là chữ số => a + b + c lớn nhất = 27
=> vô lí
vậy S không là số chính phương
\(3^{n+2}-2^{n+2}+3^n-2^n\)
= \(3^{n+2}+3^n-2^n-2^{n+2}\)
=\(\left(3^{n+2}+3^n\right)-\left(2^n-2^{n+2}\right)\)
= \(\left(3^n.3^2+3^n\right)-\left(2^n+2^n.2^2\right)\)
= \(3^n.\left(3^2+1\right)-2^n.\left(1+2^2\right)\)
=\(3^n.10-2^{n-1}.5.2\)
= \(3^n.10-2^{n-1}.10=10.\left(3^n-2^{n-1}\right)\)chia hết cho 10
suy ra \(3^{n+2}-2^{n+2}+3^n-2^n\) chia hết cho 10