K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2015

A=(1+3)+(3 mũ 2+3 mũ 3)+..............+(3 mũ 101+3 mũ 102)

=1x(1+3)+3 mũ 2 x(1+3)+..................+3 mũ 101x(1+3)

=1x4+3 mũ 2 x4+.......................3 mũ 101 x4

=4 x(1+3 mũ 2 +...............3 mũ 101)

ta thấy 4 chia hết cho 4 nên tổng đó chia hết cho 4 

tích mình  nha ,thanks

21 tháng 2 2018

You chỉ study well ko beautyful

DD
30 tháng 10 2021

\(A=1+3+3^2+...+3^{101}\)

\(=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)

\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{99}\right)⋮13\)

13 tháng 11 2021

thanh niên uy tín

 

DD
21 tháng 10 2021

 \(A=1+3+3^2+...+3^{101}\)

\(=\left(1+3+3^2\right)+...+\left(3^{99}+3^{100}+3^{101}\right)\)

\(=\left(1+3+3^2\right)+...+3^{99}\left(1+3+3^2\right)\)

\(=13\left(1+3^3+...+3^{99}\right)⋮13\)

9 tháng 11 2021

 

\begin{aligned}
&A=1+3+3^{2}+3^{3}+\ldots+3^{101} \\
&A=\left(1+3+3^{2}\right)+\left(3^{3}+3^{4}+3^{5}\right)+\ldots+\left(3^{99}+3^{100}+3^{101}\right) \\
&A=\left(1+3+3^{2}\right)+3^{3} \cdot\left(1+3+3^{2}\right)+\ldots+3^{99} \cdot\left(1+3+3^{2}\right) \\
&A=\left(1+3+3^{2}\right)\left(1+3^{3}+\ldots+3^{99}\right) \\
&A=13 \cdot\left(1+3^{3}+\ldots+3^{99}\right): 13
\end{aligned}

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

22 tháng 2 2023

tự làm nha

 

18 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\left(2+...+2^{19}\right)⋮7\)

17 tháng 12 2021

a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)

\(=7\cdot\left(2+...+2^{19}\right)⋮7\)

DD
16 tháng 12 2020

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

29 tháng 11 2021

A=(1+3+32)+(33+34+35)+...+(32019+32020+32021)                                                  A=(1+3+32)+33.(1+3+32)+...+32019.(1+3+32)

A=13+33.13+...+32019.13

A=13.(1+33+...+32019)chia hết cho 13

=>A  chia hết cho 13