K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2018

  với n = 0 thì số này = 7, n = 1,thi = 259 chia hết cho 7 nên có thể quy nạp để cm nó chia hết cho 7.còn không thì ta có 2^n = 1 (mod 3) => 2^2n+1 = 2 (mod 3) => 2^2n+1 = 3t + 2; mặt khác ta có: 
2^3 = 1 (mod 7) nên => 2^(3t+2) = 4 mod(7) => (2^2^2n+1)+3 chia hết cho 7.-> mọi số nguyên dương n

ko rõ nhưng thử tham khảo nhé

hok tốt#

2 tháng 6 2019

P = ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d )

Xét 4 số a,b,c,d khi chia cho 3, tồn tại 2 số có cùng số dư khi chia cho 3, hiệu của chúng chia hết cho 3 nên P chia hết cho 3

Xét 4 số a,b,c,d khi chia cho 4

- nếu tồn tại 2 số cùng số dư khi chia cho 4 thì hiệu của chúng chia hết cho 4, do đó P chia hết cho 4

- nếu 4 số ấy có số dư khác nhau khi chia cho 4 ( là 0,1,2,3 ) thì 2 số có dư là 0 và 2 có hiệu chia hết cho 2, 2 số có số dư là 1 và 3

có hiệu chia hết cho 2. do đó P chia hết cho 4

2 tháng 6 2019

#)Giải : 

Trong 4 số a,b,c,d có ít nhất 2 số có cùng số dư khi chia cho 3

Trong 4 số a,b,c,d : Nếu có 2 số có cùng số dư khi chia cho 4 thì hiệu hai số đó sẽ chia hết cho 4 

Nếu không thì 4 số dư theo thứ tự 0,1,2,3 <=> trong 4 số a,b,c,d có hai số chẵn, hai số lẻ 

Hiệu của hai số chẵn và hai số lẻ trong 4 số đó chia hết cho 2 

=> Tích trên chia hết cho 3 và 4 

Mà ƯCLN ( 3; 4 ) = 1 nên ( a - b ) ( a - c ) ( a - d ) ( b - c ) ( b - d ) ( c - d ) chia hết cho ( 3 . 4 ) = 12 

                           #~Will~be~Pens~#

18 tháng 6 2019

\(n^4+2n^3+2n^2+2n+1=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)=\left(n^2+1\right)\left(n+1\right)^2\)

18 tháng 6 2019

Voi n=0 

=>n4+2n3+2n2+2n+1=1=12

24 tháng 10 2017

CM A chia hết cho 7

Ta có luỹ thừa của 2 sát với 1 bôi của 7 là 23

Ta có

22n+1=(3-1)2n+1=BS 3-1=3k+2

\(\Rightarrow\) A=23k+2+3

= 4.23k+3

= 4.(23)k+3

= 4(7+1)k+3

= BS 7+7 = BS 7

Có A>7 nên A là hợp số

27 tháng 10 2016

\(3^{2n}-9=\left(3^2\right)^n-9=9^n-9\)

+Dễ thấy hiệu trên chia hết cho 9

+Ta có: 9 đồng dư với 1 (mod8)

=>9n đồng dư với 1 (mod8)

=>9n-9 dồng dư với -8 (mod8)

=>9n-9 đồng dư với 0 (mod8)

=>9n-9 chia hết cho 8

Vì (8;9)=1=>32n-9 chia hết cho 72

26 tháng 10 2016

A=9.(3^n-1)

cần cm 3^n-1 chia hết cho 8 mọi n

n=1 A=9.2 đế sai

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

27 tháng 10 2019

1. Câu hỏi của H - Toán lớp 8 - Học toán với OnlineMath