K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HT
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 9 2017
a>
\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000
ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )
1/100^2<1/2
=>A<1
ND
1
10 tháng 7 2015
Ta có: k2 > k2 - 1 = (k-1)(k+1)
⇒ 1/k2 < 1/[(k-1).(k+1)] = [1/(k-1) - 1/(k+1)]/2 (*)
Áp dụng (*), ta có:
1/22 + 1/32 + 1/42 + ... + 1/n2
< 1/22 + 1/(2.4) + 1/(3.5) + ... + 1/[(n-1).(n+1)]
= 1/22 + [1/2 - 1/4 + 1/3 - 1/5 + ... + 1/(n-1) - 1/(n+1)]/2
= 1/22 + [1/2 + 1/3 - 1/n - 1/(n+1)]/2
= 2/3 - [1/n + 1/(n+1)]/2 < 2/3 < 1
Ta có : \(\dfrac{1}{2^2}< \dfrac{1}{1.2};\dfrac{1}{3^2}< \dfrac{1}{2.3};\dfrac{1}{4^2}< \dfrac{1}{3.4};...;\dfrac{1}{n^2}< \dfrac{1}{\left(n-1\right).n}\)
\(\Rightarrow M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right).n}\)
\(\Rightarrow M< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(\Rightarrow M< 1-\dfrac{1}{n}< 1\)
Vậy \(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< 1\)
Để \(M< 1\), ta phải có điều kiện: \(n\in\) R*. Nếu \(n=0\) thì \(M\) không xác định.
\(M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)
\(=1-\dfrac{1}{n}< 1\)
Vậy \(M< 1\) với \(n\in\) R*.