Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
VÌ X A+B=2 =>A=2-B
TA CÓ: AB=(2-B)B
=2B-B^2
=-B^2+2B-1+1
= -(B-1)^2+1
VÌ (B-1)^2 > =0 => -(B-1)^2 < = (VỚI MỌI Y)
=>-(B-1)^2+1< = 1(VỚI MỌI Y)
VẬY AB < = 1
x+y=2
<=> x=2-y(1)
giả sử x*y≤1
<=>(2-y)y≤1
<=>y^2 - 2y +1≥0
<=> (y-1)^2≥0
<=>y≥1(2)
từ (1),(2)=> x*y≤1
Đúng nha !
Đề : ab + 4bc + ca \(\le\)0
Có : a + b + c = 0 => a = - b - c
Thay vào ab + 4bc + ca \(\le\)0 ta đc:
(-b - c).b + 4bc + c.(-b - c) \(\le\) 0
=> -b2 - bc + 4bc - bc - c2 \(\le\)0
=> -b2 - c2 + 2bc \(\le\)0
=> - (b2 - 2bc + c2) \(\le\) 0
=> -(b - c)2 \(\le\) 0 (luôn đúng)
Vậy ab + 4bc + ca \(\le\) 0
a. Ta có :
\(\left|x+y\right|\le\left|x\right|+\left|y\right|\Leftrightarrow\left(\left|x\right|+\left|y\right|\right)^2\ge\left|x+y\right|^2=\left(x+y\right)^2\)
\(\Leftrightarrow x^2+y^2+2\left|xy\right|\ge x^2+2xy+y^2\)
\(\Leftrightarrow2\left|xy\right|\ge2xy\Leftrightarrow\left|xy\right|\ge xy\) ( luôn đúng )
Dấu "=" xảy ra <=> x và y cùng dấu
Ta có: (a+b).(1/a+1/b) = a.(1/a+1/b)+b.(1/a+1/b) = 1+a/b+b/a+1 = 2+(a^2+b^2)/ab (1)
Mà: (a-b)^2 >= 0 <=> a^2-2ab+b^2 >=0 <=> a^2+b^2 >= 2ab => (a^2+b^2)/ab >=2 (2)
Từ (1) và (2) => (a+b).(1/a+1/b) >= 4
Hình như bài này sai đề thì phải . ( a + b ) .(1/a + 1/b ) = a. 1/a + a. 1/b + b. 1/a b. 1/b = a/a +a/b +b/a +b/b = 1 + ( a/b + b/a ) +1 = 2 + ( a/b + b/a ) ( 1)
Giả sử a lớn hơn hoặc bằng b suy ra a= b+m Ta có a/b + b/a = b+m /b +b/b+m = 1+m/b + b/b+m lớn hơn bằng 1 + m/b+m + b/ b+m = 1+ m+b/ b+m = 1+ 1= 2 .Do đó a/b + b/a lớn hơn hoặc bằng 2 ( 2 )
từ 1 và 2 (a+b). (1/a +1/b) lớn hơn hoặc bằng 4
a, Với mọi \(x;y\inℚ\)ta có :
\(x\le|x|\)và \(-x\le|x|;y\le|y|\)và \(-y\le|y|\)
\(\Rightarrow x+y\le|x|+|y|\)
\(-x-y\le|x|+|y|\)
\(\Rightarrow x+y\ge-\left(|x|+|y|\right)\)
\(\Rightarrow-\left(|x|+|y|\right)\le x+y\le|x|+|y|\)
Vậy \(|x+y|\le|x|+|y|\)
Dấu "=" xảy ra khi xy \(\ge\) 0.