K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2020

\(2^{3^{4n+1}}\) chia hết cho 2

\(3^{2^{4n+1}}\) ko chia hết cho 2 => nó là số lẻ

5 là số ko chia hết cho 2 => nó là số lẻ

mà số lẻ + lẻ = số chia hết cho 2

=> \(2^{3^{4n+1}}\)+ \(3^{2^{4n+1}}\) + 5 chia hết cho 2

=> HỢP SỐ

26 tháng 10 2015

a) Vì 24k+1 = 24k.2 = ....6k .2

Mà ...6k có tận cùng là 6 nên 24k+1 có tận cùng là 2

=> ....2 + 3 có tận cùng là 5 nên chia hết cho 5

26 tháng 10 2015

Còn câu b bạn viết lại đề đúng đi

8 tháng 2 2023

Ta có \(3^{2^{4n}+1}\) + 2 = 316n + 1 + 2 = 316n . 3 + 2 = ( 34 )4n . 3 + 2

= 814n . 3 + 2 = ( 814 )n . 3 + 2 = ( ...1 )n . 3 + 2 = ( ...1 ) . 3 + 2

= ( ...3 ) + 2 = ( ...5 )

Vì số có chữ số tận cùng là 5 chia hết cho 5 nên ( \(3^{2^{4n}+1}\) + 2 ) ⋮ 5