K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2021

\(\left(a+2\right)^2+\left(b+2\right)^2+\left(a^2+b^2+ab\right)\\ =a^2+4a+4+b^2+4b+4+a^2+b^2+ab\\ =2a^2+2b^2+4a+4b+ab+8\\ =\left[\left(a^2+ab+\dfrac{1}{4}b^2\right)+2\left(a+\dfrac{1}{2}b\right)+1\right]+\left(a^2+2a+1\right)+\dfrac{7}{4}\left(b^2+2\cdot\dfrac{6}{7}b+\dfrac{42}{49}\right)+\dfrac{9}{2}\\ =\left(a+\dfrac{1}{2}b+1\right)^2+\left(a+1\right)^2+\dfrac{7}{4}\left(b+\dfrac{6}{7}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}>0\left(đpcm\right)\)

2 tháng 11 2021

hot quá thầy

15 tháng 4 2018

Gt<=>(a+b)(a^2-ab+b^2)-ab(a+b)>=0

<=>(a+b)(a-b)^2>=0 (đúng với mọi a,b >=0)

=> bdt9 đúng

22 tháng 6 2018

\(a)\) Ta có : 

\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)

Vậy \(A=29\)

\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)

Vậy \(B=133\)

\(b)\) Đặt \(A=-x^2+x-1\) ta có : 

\(-A=x^2-x+1\)

\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)

Vậy \(A< 0\) với mọi số thực x 

Chúc bạn học tốt ~ 

27 tháng 4 2022

`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`

`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)

     `=>` Đẳng thức được c/m

_________________________________________

`b) a^2 + b^2 + c^2 >= ab + bc + ca`

`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`

`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`

`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)

         `=>` Đẳng thức được c/m

a) Ta có: \(x^2-x+1=x^2-2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)

hay \(x^2-x+1>0\forall x\)(đpcm)

b) Ta có: \(-x^2+2x-4=-\left(x^2-2x+4\right)=-\left(x^2-2x+1+3\right)=-\left(x-1\right)^2-3\)

Ta có: \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-3\le-3< 0\forall x\)

hay \(-x^2+2x-4< 0\forall x\)(đpcm)

25 tháng 2 2020

yeu

NV
8 tháng 6 2019

Ta chứng minh: \(a^3+b^3\ge ab\left(a+b\right)\)

Thực vậy, BĐT tương đương:

\(a^3+b^3-a^2b-ab^2\ge0\Leftrightarrow a^2\left(a-b\right)-b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng với a; b dương)

Vậy BĐT được chứng minh

Tương tự ta có: \(b^3+c^3\ge bc\left(b+c\right)\); \(c^3+a^3\ge ca\left(c+a\right)\)

Cộng vế với vế:

\(2\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\)

\(\Rightarrow\frac{a^3+b^3+c^3}{ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)}\ge\frac{a^3+b^3+c^3}{2\left(a^3+b^3+c^3\right)}=\frac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c\)

11 tháng 12 2019

a) Đề sai thì phải.Phải là CM: \(x^2-x+1>0\) với mọi x

Ta có:

\(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\) nên \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

Vậy \(x^2-x+1>0\) với mọi \(x\in R\)

b)Ta có:

\(-x^2+2x-4=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x nên \(-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi \(x\in R\)

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

a^2/b+b^2/a>=a+b

=>a^3+b^3>=ab(a+b)

=>a^3+b^3-a^2b-ab^2>=0

=>a^2(a-b)+b^2(b-a)>=0

=>(a-b)^2(a+b)>=0(luôn đúng)